
A New Approach to the Construction
of Generalized LR Parsing Algorithms∗

Miguel A. Alonso and David Cabrero† and Manuel Vilares
Departamento de Computación

Facultad de Informática, Universidad de La Coruña
Campus de Elviña s/n, 15071 La Coruña, Spain
{alonso,cabrero,vilares}@dc.fi.udc.es

Abstract

We present a Generalized LR parsing algorithm
for unrestricted context-free grammars working
in complexity O(n3). It differs from previous
approaches in the use of dynamic programming
techniques to cope with the non determinism,
instead of a graph-structured stack. The steps
for deriving our algorithm from classical Ear-
ley’s parsing algorithm are shown.

1 Introduction

LR parsing strategies can analyze LR grammars,
which are deterministic. If we consider LR pars-
ing tables in which each entry can contain several
actions, we obtain non-deterministic LR parsing,
often known as generalized LR parsing, which can
analyze non-deterministic context-free grammars.
It this context, some mechanism is needed in or-
der to represent the non-deterministic evolution of
the stack. Tomita (Tomita 86) have proposed an
algorithm based on a graph-structured stack but it
has problems with cyclic and hidden left recursive

constructions. Rekers (Rekers 92) has modified
the original algorithm to overcome its limitations,
but maintaining its original complexity O(np+1),
where p is the length of the longer right-hand side
of a rule. Space and time bounds can be reduced
transforming the form of the grammar (Sheil 76).
Some approaches also use transformations in the
construction of the LR automaton and in these
the treatment of cyclicity is even more complex
and so is often avoided (Nederhof & Sarbo 93).

We propose a generalized LR(1) and LALR(1)
parsing algorithm for arbitrary context-free gram-
mars which is derived, in a natural way, from the
well known Earley’s algorithm (Earley 70), pre-
serving cubic time complexity in the worst case.

∗ This work was partially supported by project
XUGA10505B96 of Xunta de Galicia and by Acción in-
tegrada HF96-36 of Government of Spain.

† Currently at Centro de Investigacións Lingǘısticas e
Literarias “Ramón Piñeiro”, Estrada Santiago-Noia km 3,
A Barcia, 15896 Santiago de Compostela, Spain.

We will describe parsing algorithms using Pars-

ing Schemata, a framework for high-level descrip-
tion of parsing algorithms (Sikkel 97). An inter-
esting application of this framework is the anal-
ysis of the relations between different parsing al-
gorithms. Recently, several authors have shown
how one parsing algorithm can be derived from
another considering Earley’s algorithm as start-
ing point (Nederhof & Sarbo 93; McLean & Hor-
spool 96). Using parsing schemata, algorithms are
related by studying the formal relations between
their underlying parsing schemata (Sikkel 97).

Given a context-free grammar G =
(Vn, VT , P, S), where VN is a finite set of
non-terminal symbols, VT is a finite set of
terminal symbols, P is a finite set of productions
A → α and S ∈ VN is the start symbol or
axiom of the grammar, a parsing system for G

and string a1 . . . an is a triple 〈I,H,D〉, with
I a set of items which represent intermediate
parse results, H an initial set of items that
encodes the sentence to be parsed, and D a set
of deduction steps that allow to derive new items
from already know items. Deduction steps are
of the form η1, . . . , ηk ⊢ ξ, meaning that if all
antecedents ηi of a deduction step are present,
then the consequent ξ should be generated by
the parser. A set F ⊆ I of final items represent
the recognizing of a sentence.

A parsing schema is a parsing system parame-
terized by a context-free grammar and a sentence.

A parsing schema can be generalized from
another one using the following transforma-
tions (Sikkel 97):

• Item refinement, breaking single items into
multiple items.

• Step refinement, decomposing a single deduc-
tion step in a sequence of steps.

• Extension of a schema by considering a larger
class of grammars.

In order to decrease the number of items and de-
duction steps in a parsing schema, we can apply
the following kinds of filtering:

• Static filtering, in which redundant parts are
simply Discarded.

• Dynamic filtering, using context information
to determine the validity of items.

• Step contraction, in which a sequence of de-
duction steps is replaced by a single one.

1.1 Notation

Given a CFG G = (Vn, VT , P, S), we will write
A, B . . . for elements in VN , a, b . . . for elements in
VT , X, Y . . . for elements in VN ∪ VT and α, β . . .

for elements in V ∗. The relation ⇒ on V ∗ × V ∗

is defined by α ⇒ β if there are α′, α′′, A, γ such
that α = α′Aα′′, β = α′γα′′ and A → γ ∈ P

exists. We can suffix each element in a rule r,
thus Ar,0 → Ar,1Ar,2 . . . Ar,nr

.
The set of items in a parsing schema corre-

sponding to a given parsing algorithm A is called
IA, the set of hypotheses HA, the set of final items
FA and the set of deduction steps is called DA.

2 Relating Earley and LR Parsing
Algorithms

Given a grammar G and a input string a1 . . . an,
an Earley parser (Earley 70) for G constructs a
sequence of n + 1 set of items. Each item [A →
α.β, i, j] indicates that α

∗
⇒ ai+1 . . . aj , with 0 ≤

i ≤ j, and that symbol A has been predicted in
the item set i.

Parsing begin with a set of initial items [S →
.α, 0, 0], where S → α ∈ P , and successively ap-
plies three operations until new items cannot be
generated:

scanner operation can be applied if there exists
an item [A → α.aβ, i, j] and aj+1 = a, yield-
ing the item [A → αa.β, i, j + 1].

predictor operation, which represents the pre-
dictive descendent phase of the algorithm,
can be applied when an item [A → α.Bβ, i, j]
exists, generating an item [B → .γ, j, j] for
each B → γ ∈ P .

completer operation can be applied if two items
[A → α.Bβ, i, k] and [B → γ., k, j] exist, and
produces a new item [A → αB.β, i, j], which
represent that ak+1 . . . aj can be reduced to

B and therefore, as we know that α reduces
the input ai+1 . . . ak, we can ensure that αB

reduces ai+1 . . . aj .

The input sentence belongs to the language de-
scribed by the grammar if the final item [S →
α., 0, n] is generated.

The parsing schema corresponding to Earley’s
algorithm is the following (Sikkel 97):

IEarley = {[A → α.β, i, j]}

HEarley = {[a, i, i + 1] | a = ai}

DInit
Earley = {⊢ [S → .α, 0, 0]}

DScan
Earley =

{

[A → α.aβ, i, j], [a, j, j + 1]
⊢ [A → αa.β, i, j + 1]

}

DPred
Earley = {[A → α.Bβ, i, j] ⊢ [B → .γ, j, j]}

DComp
Earley =

{

[A → α.Bβ, i, k], [B → γ., k, j]
⊢ [A → αB.β, i, j]

}

DEarley = DInit
Earley ∪ DScan

Earley ∪ DPred
Earley ∪ DComp

Earley

FEarley = {[S → α., 0, n]}

The previous parsing schema corresponds to
“uncompile” an LR(0) parser: while LR(0)
parsers compile the Pred steps into an finite state
control, an Earley parser use run-time items.
What Pred really does is compute the closure
function in run-time. In this sense, the Scan and
Comp steps correspond to Shift and Reduce of
classical LR parsers.

In order to obtain a version closer to LR stack
computations, we can make several minor changes
in the Scan and Comp steps, involving a slightly
different use of indexes: the components i and j

of an item [A → α.β, i, j] will now represent the
part of the input string recognized by the element
in α just before the dot. If α = ε then i = j. As
a consequence, the completer step must now have
m elements as antecedents, where m is the length
of the right hand side of the rule to be reduced.
In the new LR(0) deduction steps, the Scan and

Comp steps are called Shift and Reduce because
they show a close relation to shift and reduce

operations of LR parsers:

DShift

LR(0) =

{

[A → α.aβ, i, j], [a, j, j + 1]
⊢ [A → αa.β, j, j + 1]

}

DReduce
LR(0) =































[B → X1X2 · · ·Xm., jm−1, jm],
...
[B → X1.X2 · · ·Xm, j0, j1],
[A → α.Bβ, i, j0]
⊢ [A → αB.β, j0, jm]































DLR(0) = DInit
Earley ∪ DShift

LR(0) ∪ DPred
Eaarley ∪ DReduce

LR(0)

3 Using Lookahead: SLR(1) and
LR(1)

We can modify the previous parsing schema by
adding lookahead in order to mimic the behavior
of SLR(1) parsers. For this purpose, we intro-
duce a dynamic filter in the Reduce step, using
the function “follow”, which is defined in relation
to a function “first”:

Definition 1 An element a ∈ VT is in first(X),
where X ∈ V if X = a or X → ε ∈ P and a = ε

or X → Y1 · · ·Yi · · ·Ym ∈ P and a ∈ first(Yi) and

∀i−1
j=1 ε ∈ first(Yj).

The extension to first(α), where α =
X1 · · ·Xi · · ·Xn ∈ V , is straightforward:

a ∈ first(α) if a ∈ first(X1) ∪ · · · ∪ first(Xi)
and ε 6∈ first(Xi) and ∀i−1

j=1 ε ∈ first(Xj). If

α
∗
⇒ ε then ε ∈ first(α).

Definition 2 An element a ∈ VT ∪ {$} is in

follow(A), where $ is an special end-of-input

marker not in VT and A ∈ VN , if a = $ and

A is the start symbol or A′ → αAβ ∈ P and

a ∈ (first(β) − {ε}) or A′ → αAβ ∈ P and

ε ∈ first(β) and a ∈ follow(A′).

Checking of lookahead is performed by the con-
dition ∃[a, j, j + 1] ∈ HSLR ∧ a ∈ follow(B)
introduced in the Reduce deduction step for
SLR(1):

DReduce
SLR =















































[B → X1X2 · · ·Xm., jm−1, jm],
...
[B → X1.X2 · · ·Xm, j0, j1],
[A → α.Bβ, i, j0]
⊢ [A → αB.β, j0, jm] |
∃[a, j, j + 1] ∈ HSLR ∧
a ∈ follow(B)















































DSLR = DInit
Earley ∪ DShift

LR(0) ∪ DPred
Earley ∪ DReduce

SLR

In order to obtain a parsing schema for LR(1),
we must introduce the notion of lookahead into
items, as is done in the classical construction of
finite state control for LR(1) parsers (Aho & Ull-
man 72). The items in LR parsing schema can be
obtained by item refinement of SLR items if we
consider that in Earley and SLR parsing schema,
each item represents a set of items having the
same dotted rule and indexes but probably dif-
ferent lookahead:

ILR = {[A → α.β, b, i, j]}

where b represents the lookahead. The parsing
schema, in which lookahead is set in DPred

LR and
checked in DReduce

LR , is the following:

HLR = HEarley

DInit
LR = {⊢ [S → .α, $, 0, 0]}

DShift
LR =

{

[A → α.aβ, b, i, j], [a, j, j + 1]
⊢ [A → αa.β, b, j, j + 1]

}

DPred
LR =











[A → α.Bβ, b, i, j]
⊢ [B → .γ, b′, j, j] |
b′ = first(βb)











DReduce
LR =



























































[B → X1X2 · · ·Xm., b′, jm−1, jm]
...
[B → X1.X2 · · ·Xm, b′, j0, j1],
[A → α.Bβ, b, i, j0]
⊢ [A → αB.β, b, j0, jm] |
b′ ∈ first(βb) ∧
∃[a, j, j + 1] ∈ HLR ∧
a = b′



























































DLR = DInit
LR ∪ DShift

LR ∪ DPred
LR ∪ DReduce

LR

FLR = {[S → α., $, 0, n]}

4 Compiling Predictive Information
into Tables

A more compact and efficient algorithm can be
obtained by avoiding the computation of Pred

steps in run-time. Instead, they are compiled,
resulting in the construction of states as in clas-
sical LR algorithms (Aho & Ullman 72). The
items in the new LRc parsing schema are equiv-
alent to those ones of LR schema, because items
[A → α.β, b, i, j] are simply replaced by [st, i, j],
where st is the precomputed state which contains
the element [A → α.β, b]. The parsing schema is
the following:

ILRc = {[st, i, j]}

HLRc = HEarley

DInit
LRc = {⊢ [st0, 0, 0]}

DShift
LRc =











[st, i, j], [a, j, j + 1]
⊢ [st′, j, j + 1] |
shiftst′ ∈ action(st, a)











DReduce
LRc =











































































[stm, jm−1, jm],
...
[st1, j0, j1],
[st0, i, j0]
⊢ [st, j0, jm] |
∃[a, j, j + 1] ∈ HLRc ∧
reducer ∈ action(stm, a) ∧
sti ∈ reveal(sti+1) ∧
st ∈ goto(st0, lhs(r)) ∧
m = length(rhs(r))











































































DLRc = DInit
LRc ∪ DShift

LRc ∪ DReduce
LRc

where sti ∈ reveal(sti+1) is equivalent to sti+1 ∈
goto(sti, X) if X ∈ VN and it is equivalent to
shiftsti+1 ∈ action(sti, X) if X ∈ VT . More intu-
itively, we can say that reveal function traverse
the finite state control of the automaton back-
wards.

FLRc = {[stf , 0, n]}

where stf is a final state of the LR automaton.
In the preceding, “action” and “goto” refer to

the tables that code the behavior of the LR au-
tomaton:

action table determines what action should be
taken for a given state and lookahead. In
the case of shift actions, it determines the
resulting new state and in the case of reduce
actions, the rule which is to be applied for
the reduction.

goto table determines what will be the state af-
ter performing a reduce action. Each entry
is accessed using the current state and the
non-terminal, which is the left-hand side of
the rule to be applied for reduction.

A significative advantage with respect to previ-
ous parsing schema is that we can now differenti-
ate between LR(1) and LALR(1) algorithms sim-
ply by choosing the appropriate compiling meth-
ods for the finite state control.

5 Achieving Cubic Complexity

Reduce step in previous parsing schemata in-
crease the complexity of the algorithms to np+1,
where p is the longest right-hand side of rules in
P . Implicit binarization of rules (Lang 91) can be
applied to achieve O(n3) complexity in the gen-
eral case. Thus, the reduction of a rule

Ar,0 → Ar,1 . . . Ar,nr

can be equivalently performed as the reduction of
the following nr +1 rules with at most 2 elements
on their right-hand side:

Ar,0 → ∇r,0

∇r,0 → Ar,1 ∇r,1
...
∇r,nr−1 → Ar,nr

∇r,nr

∇r,nr
→ ε

Applying item refinement to LRc items, we ob-
tain the new form of items, with a new element
that represent a symbol in a rule or a ∇r,i meaning
that elements Ar,i+1 . . . Ar,nr

have been reduced.
Therefore, ∇r,i is like a dotted rule Ar,0 → α.β

where α = Ar,1 . . . Ar,i and β = Ar,i+1 . . . ar,nr
.

With respect to deduction steps, Reduce step
must be refined into three steps:

Sel, which select the rule to be reduced.

Red, which reduce each implicit binary rule.

Head, which recognize the left-hand symbol of
the rule reduced.

We must also apply step refinement to Shift de-
duction steps, obtaining:

InitShift, which is applied when the symbol to
be shifted is the first symbol in the right hand
side of a rule.

Shift, which is applied in the shift of the other
symbols in a rule.

As a result, we obtain the following parsing
schema:

ILR3 =
{

[A, st, i, j] ∪ [∇r,s, st, i, j]
}

HLR3 = HEarley

DInit
LR3 = {⊢ [−, st0, 0, 0]}

DInitShift

LR3 =



























[A, st, i, j]
⊢ [Ar,1, st

′, j, j + 1] |
∃[a, j, j + 1] ∈ HLR3 ∧
Ar,1 = a ∧
shiftst′ ∈ action(st, a)



























DShift

LR3 =



























[Ar,s, st, i, j]
⊢ [Ar,s+1, st

′, j, j + 1] |
∃[a, j, j + 1] ∈ HLR3 ∧
Ar,s+1 = a ∧
shiftst′ ∈ action(st, a)



























DSel
LR3 =



















[Ar,nr
, st, i, j]

⊢ [∇r,nr
, st, j, j] |

∃[a, j, j + 1] ∈ HLR3 ∧
reducer ∈ action(st, a)



















DRed
LR3 =



















[∇r,s, st, k, j],
[Ar,s, st, i, k]
⊢ [∇r,s−1, st

′, i, j] |
st′ ∈ reveal(st)



















DHead
LR3 =











[∇r,0, st, i, j]
⊢ [Ar,0, st

′, i, j] |
st′ ∈ goto(st, Ar,0)











D
LR3 = DInit

LR3 ∪ DInitShift

LR3 ∪ DShift

LR3 ∪

DSel
LR3 ∪ DRed

LR3 ∪ DHead
LR3

FLR3 =
{

[Φ, stf , 0, n]
}

where stf is a final state and Φ is the axiom of
the augmented grammar.

5.1 Complexity Bounds

As the size of the grammar and the finite-state
control of the LR automaton are fixed for a given
grammar, we have taken the length n of the input
string as parameter of complexity. As items in-
clude two indexes to the input string, there are
O(n2) items. Each deduction step executes a
bounded number of steps per item. The worst
case is given by DRed

LR3 , which could combine O(n2)
items of the form [∇r,s, st, k, j] with O(n) items
of the form [Ar,s, st, i, k] and therefore this step
has O(n3) complexity.

As in Earley’s algorithm, we can group items in
item sets1. In this case, for the class of bounded

item grammars2, the number of items is bounded
whichever is the item set, and linear time and
space on the length of the input string is attained.
This has a practical sense because this class of
grammars includes the LR family and, in conse-
quence, linear parsing can be performed when lo-
cal determinism is present.

5.2 Dynamic Programming

The common framework for parsing described
by Lang in (Lang 91) is based on dynamic pro-
gramming interpretation of push-down automata.
In that framework, weakly predictive automata,
such as LR, can be interpreted in dynamic pro-
gramming using items containing only the top el-
ement of the stack. The resulting automata are
very close to inference systems (Villemonte de la-
Clergerie 93, pp. 173–175). In this context, the
LR3 parsing schema can be seen as a dynamic
interpretation of LR(1) or LALR(1) parsing algo-
rithms using an inference system based on that
kind of items. It can be easily transformed into a
set of push-down transitions:

• Head deduction steps correspond to SWAP
transitions.

• Init, InitShift, Shift and Sel steps corre-
spond to PUSH transitions.

• Red steps correspond to POP transitions.

The push-down transitions which describe the dy-
namic programming interpretation of LR(1) or
LALR(1) push-down automata are the following:

1An item set can be associated to each position in the
input string. Items with fourth component equals to j are
in the item set j.

2Which are called bounded state grammars in (Earley
70)

Φ-> . S, $

state 0

A -> c. d, a

B -> c . d, b

state 1

A -> cd. , a

B -> cd . , b

state 2

S -> A . a, $

state 4

S -> B . b, $

state 3

3,1[,st1,1,2]

3,2[,st2,2,2]

PUSH

POP

SWAP

3,0[,st0,0,2]

Φ-> S . , $

state 5

S -> . Aa, $

S -> . Bb, $

A -> . cd, a

B -> . cd, b

S

cd

A B

[c,st1,0,1][d,st2,1,2]

[A,st4,0,2]

Figure 1: Transitions for the input string cda in the LALR(1) automaton for G1

DInit
LRS1 = {⊢ [−, st0, 0, 0]}

DInitShift

LRS1 =



































[A, st, i, j]
⊢ [Ar,1, st

′, j, j + 1]
[A, st, i, j] |

∃[a, j, j + 1] ∈ HLRS1 ∧
Ar,1 = a ∧
shiftst′ ∈ action(st, a)



































DShift

LRS1 =



































[Ar,s, st, i, j]
⊢ [Ar,s+1, st

′, i, j + 1]
[Ar,s, st, i, j] |

∃[a, j, j + 1] ∈ HLRS1 ∧
Ar,s+1 = a ∧
shiftst′ ∈ action(st, a)



































DSel
LRS1 =



























[Ar,nr
, st, i, j]

⊢ [∇r,nr
, st, j, j]

[Ar,nr
, st, i, j] |

∃[a, j, j + 1] ∈ HLRS1 ∧
reducer ∈ action(st, a)



























DRed
LRS1 =











[∇r,s, st, i, k][Ar,s, st, k, j]
⊢ [∇r,s−1, st

′, i, j] |
st′ ∈ reveal(st)











DHead
LRS1 =

{

[∇r,0, st, i, j] ⊢ [Ar,0, st
′, i, j] |

st′ ∈ goto(st, Ar,0)

}

D
LRS1 = DInit

LRS1 ∪ DInitShift

LRS1 ∪ DShift

LRS1∪

DSel
LRS1 ∪ DRed

LRS1 ∪ DHead
LRS1

6 Examples

We are now going to show how a parsing algo-
rithm implementing the LRS1 schema use the
lookahead to improve performance by avoiding
the exploration of useless computations and how
it can deal with cyclic and recursive rules.

For the first purpose, we will use the following
grammar G1, simple but highly instructive:

(0) Φ → S

(1) S → Aa

(2) S → Bb

(3) A → cd

(4) B → cd

The language generated by G1 is the set
{cda, cdb}. In Figure 1 we show the LALR(1)
automaton for this grammar, with the transitions
corresponding to the interpretation of the prefix
cd in the input cda. With computation starting in
state 0, the first action is an InitShift, pushing
the item [c, st1, 0, 1] and changing to state 1. In
this state we know that we are trying to analyze
the current part of the input according to rules 3
and 43, but we do not know which of the two rules

3In the sense of Earley parsers, this corresponds to pre-
dict the rules 3 and 4.

2,0 ,st0,i,j][

,st0,i,j]

,st0,i,j]

state 1

[4,0

3,0

B -> A . , a

[

state 2

A -> B . , a
-> . S, $

B -> . , a
B -> . A, a

S -> . Aa, $
A -> . B, a

state 0

S -> Aa . , $
S -> A . a, $

state 3

Φ

PUSH

POP

SWAP

Φ-> S . , $

state 5

2,1[,st1,i,j]

3,1[,st2,i,j]

S
B

A

[B,st1,i,j]

[a,st3,j,j+1]

[A,st2,i,j]

a

Figure 2: Transitions of a cycle in the LALR(1) automaton for G2

will be the only correct one. The following ac-
tion is a Shift, pushing the item [d, st2, 1, 2] and
changing to state 2. From this state we know that
both rules 3 and 4 recognize the input cd, but the
lookahead determines that 3 is the correct one. A
parser without lookahead would have to explore
the two alternatives, discovering the correct one
and rejecting the incorrect one some time later.
The use of lookahead increase the deterministic
domain, allowing better efficiency.

The following actions correspond to the reduc-
tion by rule 3:

1. Sel: Push [∇3,2, st2, 2, 2]

2. Red: Pop [∇3,2, st2, 2, 2] and [d, st2, 1, 2] for
[∇3,1, st1, 1, 2]

3. Red: Pop [∇3,1, st1, 1, 2] and [c, st1, 0, 1] for
[∇3,0, st0, 0, 2]

4. Head: Swap [∇3, 0.st0, 0, 2] for [A, st4, 0, 2]

To show the analysis of cyclic and recursive
grammars, we will use the following grammar G2,
which is again small but instructive:

(0) Φ → S

(1) S → Aa

(2) A → B

(3) B → A

(4) B → ε

The language generated by G2 is {a}. In Fig-
ure 2 you can see the LALR(1) automaton for
this grammar, with the transitions corresponding
to several cyclic computations.

Starting at state 0, we must reduce rule 4:

1. Sel: Push [∇4,0, st0, i, j]

2. Head: Swap [∇4,0, st0, i, j] for [B, st1, i, j]

As the current state is 1, we can reduce the rule
2, which involves:

1. Sel: Push [∇2,1, st1, i, j]

2. Red: Pop [∇2,1, st1, i, j] and [B, st1, i, j] for
[∇2,0, st0, i, j]

3. Head: Swap [∇2,0, st0, i, j] for [A, st2, i, j]

Now, we are in state 2 and we can reduce rule 3:

1. Sel: Push [∇3,1, st2, i, j]

2. Red: Pop [∇3,1, st2, i, j] and [A, st2, i, j] for
[∇3,0, st0, i, j]

3. Head: Swap [∇3,0, st0, i, j] for [B, st1, i, j]

The item resulting from the last transition,
[B, st1, i, j], had been generated before and there-
fore we do not need to compute the actions de-
rived from this item again. As a consequence, all

items corresponding to the cyclic application of
rules 2 and 3 are calculated only once at the first
iteration.

To continue the analysis of an input sentence,
we must apply a Shift in state 2, pushing
[a, st3, j, j + 1].

The shared forest can be obtained using the
method described in (Lang 91), generating a rule
of an output grammar in each transition.

7 Conclusion

We have considered Earley’s algorithm as a start-
ing point for deriving other well known parsing
algorithms, such us Generalized LR. Several in-
termediate parsing schemata have been used in
the path from Earley to LR, applying simple and
intuitive transformations in each step. The result-
ing algorithm can be integrated in the common
framework for parsing in dynamic programming
proposed by Lang, achieving a O(n3) complexity
in the worst case

The technique proposed can be extended to
deal with grammatical formalisms which have
a context-free backbone. As has been shown
in (Villemonte de laClergerie 93), there is
a straightforward extension of automata-based
context-free parsing techniques to Horn-clause
analysis. The most common grammatical frame-
work based on Horn-clauses is Definite Clause
Grammars (Pereira & Warren 83). We can think
of a DCG as a CFG skeleton with attributes as-
sociated to grammatical symbols. A implemen-
tation of a parser for DCGs based in our specifi-
cation of LALR(1) has been described in (Vilares
Ferro & Alonso Pardo 96).

An interesting facility in natural language
parsers is the possibility of dynamically checking
the syntax correctness of a text when it has been
edited, changing the internal representation of the
analysis rather than generating an entirely new
one. In this sense, the algorithm presented here
can be extended in order to obtain a full incre-

mental parser, that is, a parser that can recover
parts of older analysis when a new one is tried.
With full incrementality we indicate that mod-
ifications in every point of the input string are
allowed. The implementation of an incremental
parser based on our specification of LALR(1) al-
gorithm has been described in (Vilares Ferro &
Dion 94).

References
(Aho & Ullman 72) Alfred V. Aho and Jeffrey D. Ullman. The

Theory of Parsing, Translation and Compiling, volume 1–2.
Prentice Hall, 1972.

(Earley 70) J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2):94–102, 1970.

(Lang 91) Bernard Lang. Towards a uniform formal framework for
parsing. In Masaru Tomita, editor, Current Issues in Parsing
Technology, pages 153–171. Kluwer Academic Publishers, Nor-
well, MA, USA, 1991.

(McLean & Horspool 96) Philippe McLean and R. Nigel Horspool.
A faster Earley parser. In Proc. of International Conference
on Compiler Construction (CC’96), pages 281–293, Linkopen,
Sweden, 1996.

(Nederhof & Sarbo 93) Mark-Jan Nederhof and J. J. Sarbo. In-
creasing the applicability of LR parsing. In Proc. of Third In-
ternational Workshop on Parsing Technologies, pages 187–201,
Tilburg (The Netherlands) and Durbuy (Belgium), 1993.

(Pereira & Warren 83) Fernando C. N. Pereira and David H. D. War-
ren. Parsing as deduction. In Proc. of the 21st Annual Meeting
of the Association for Computational Linguistics, pages 137–
144. ACL, June 1983.

(Rekers 92) Jan Rekers. Parsing Generation for Interactive Envi-
ronments. Unpublished PhD thesis, University of Amsterdam,
Amsterdam, The Netherlands, 1992.

(Sheil 76) B. A. Sheil. Observations on context-free grammars. In
Statistical Methods in Linguistics, pages 71–109, Stockholm,
Sweden, 1976.

(Sikkel 97) Klaas Sikkel. Parsing Schemata — A Framework for
Specification and Analysis of Parsing Algorithms. Texts in
Theoretical Computer Science — An EATCS Series. Springer-
Verlag, Berlin/Heidelberg/New York, 1997.

(Tomita 86) Masaru Tomita. Efficient Parsing for Natural Lan-
guage. Kluwer Academic Publishers, Boston, MA, USA, 1986.

(Vilares Ferro & Alonso Pardo 96) Manuel Vilares Ferro and Miguel
Angel Alonso Pardo. An LALR extension for DCGs in dynamic
programming. In P. Lucio, M. Martelli, and M. Navarro, edi-
tors, Proc. of APPIA-GULP-PRODE’96 Joint Conference on
Declarative Programming, pages 79–88, San Sebastián, Spain,
July 1996.

(Vilares Ferro & Dion 94) Manuel Vilares Ferro and Bernard A.
Dion. Efficient incremental parsing for context-free languages. In

Proc. of the 5th IEEE International Conference on Computer
Languages, pages 241–252, Toulouse, France, 1994.

(Villemonte de laClergerie 93) Eric Villemonte de la Clergerie. Au-
tomates à Piles et Programmation Dynamique. DyALog : Une
Application à la Programmation en Logique. Unpublished PhD
thesis, Université Paris 7, Paris, France, 1993.

