
Mixed Parsing of Tree Insertion and Tree

Adjoining Grammars

Miguel A. Alonso1, Vicente Carrillo2, and Vı́ctor J. Dı́az2

1 Departamento de Computación, Universidade da Coruña
Campus de Elviña s/n, 15071 La Coruña (Spain)

alonso@udc.es
2 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)
{carrillo, vjdiaz}@lsi.us.es

Abstract. Adjunction is a powerful operation that makes Tree Adjoin-
ing Grammar (TAG) useful for describing the syntactic structure of natu-
ral languages. In practice, a large part of wide coverage grammars written
following the TAG formalism is formed by trees that can be combined
by means of the simpler kind of adjunction defined for Tree Insertion
Grammar. In this paper, we describe a parsing algorithm that makes use
of this characteristic to reduce the practical complexity of TAG parsing:
the expensive standard adjunction operation is only considered in those
cases in which the simpler cubic-time adjunction cannot be applied.

1 Introduction

Tree Adjoining Grammar (TAG) [4] and Tree Insertion Grammar (TIG) [6] are
grammatical formalisms that make use of a tree-based operation called adjunc-
tion. However, adjunctions are more restricted in the case of TIG than in the case
of TAG, which has important consequences with respect to the set of languages
generated and the worst-case complexity of parsing algorithms:

– TAG generates tree adjoining languages, a strict superset of context-free
languages, and the complexity of parsing algorithms is in O(n6) for time
and in O(n4) for space with respect to the length n of the input string.

– TIG generates context-free languages and can be parsed in O(n3) for time
and in O(n2) for space.

Albeit the powerful adjunction provided by TAG makes it useful for describ-
ing the syntax of natural languages, most of the trees involved in wide coverage
grammars like XTAG [3] do not make use of such operation, and so a large por-
tion of XTAG is in fact a TIG [6]. As the full power of a TAG parser is only put
into practice in adjunctions involving a given set of trees, to apply a parser work-
ing in O(n6) time complexity when most of the work can be done by a O(n3)
parser seems to be a waste of computing resources. In this paper, we propose a
mixed parser that takes the best of both worlds: those parts of the grammar that

correspond to a TIG are managed in O(n3) time and O(n2) space complexity,
and only those parts of the grammar involving the full kind of adjunction present
in TAG are managed in O(n6) time and O(n4) space complexity.

1.1 Tree Adjoining Grammars

Formally, a TAG is a 5-tuple G = (VN , VT , S, I,A), where VN is a finite set of
non-terminal symbols, VT a finite set of terminal symbols, S the axiom of the
grammar, I a finite set of initial trees and A a finite set of auxiliary trees. I∪A is
the set of elementary trees. Internal nodes are labeled by non-terminals and leaf
nodes by terminals or the empty string ε, except for just one leaf per auxiliary
tree (the foot) which is labeled by the same non-terminal used as the label of its
root node. The path in an elementary tree from the root node to the foot node
is called the spine of the tree.

 S

 S

AdvNP VP

VP

VP

runs slowlyJohn

NP VP

John VP Adv

slowlyruns

spine

Inital tree Auxiliary tree

Derived tree

Fig. 1. Adjunction operation

New trees are derived by adjunction: let γ be a tree containing a node N γ

labeled by A and let β be an auxiliary tree whose root and foot nodes are also
labeled by A. Then, the adjunction of β at the adjunction node N γ is obtained
by excising the subtree of γ with root Nγ , attaching β to Nγ and attaching the
excised subtree to the foot of β. We illustrate the adjunction operation in Fig. 1,
where we show a simple TAG with two elementary trees: an initial tree rooted S
and an auxiliary tree rooted VP. The derived tree obtained after adjoining the
VP auxiliary tree on the node labeled by VP located in the initial tree is also
shown.

We use β ∈ adj(Nγ) to denote that a tree β may be adjoined at node N γ of
the elementary tree γ. If adjunction is not mandatory at N γ then nil ∈ adj(Nγ)

where nil /∈ I ∪ A is a dummy symbol. If adjunction is not allowed at N γ then
{nil} = adj(Nγ).

1.2 Tree Insertion Grammars

We can consider the set A as formed by the union of the sets AL, containing
left auxiliary trees in which every nonempty frontier node is to the left of the
foot node, AR, containing right auxiliary trees in which every nonempty frontier
node is to the right of the foot node, and AW , containing wrapping auxiliary

trees in which nonempty frontier nodes are placed both to the left and to the
right of the foot node. Given an auxiliary tree, we call spine nodes to those nodes
placed on the spine and left nodes (resp. right nodes) to those nodes placed to
the left (resp. right) of the spine. The set ASL ⊆ AL (resp. ASR ⊆ AR) of
strongly left (resp. strongly right) auxiliary trees is formed by trees in which no
adjunction is permitted on right (resp. left) nodes and only strongly left (resp.
right) auxiliary trees are allowed to adjoin on spine nodes. Figure 2 shows three
derived trees resulting from the adjunction of a wrapping, left and right auxiliary
tree, respectively.

In essence, a TIG is a restricted TAG where auxiliary trees must be either
strongly left or strongly right and adjunctions are not allowed in root and foot
nodes of auxiliary trees.

Wrapping
auxiliary tree

Left
auxiliary tree

Right
auxiliary tree

Fig. 2. TAG vs. TIG adjunction operation

1.3 Notation for Parsing Algorithms

We will describe parsing algorithms using Parsing Schemata, a framework for
high-level descriptions of parsing algorithms [8]. A parsing system for a grammar
G and string a1 . . . an is a triple 〈I,H,D〉, with I a set of items which repre-
sent intermediate parse results, H an initial set of items called hypothesis that
encodes the sentence to be parsed, and D a set of deduction steps that allow
new items to be derived from already known items. Deduction steps are of the

form η1,...,ηk

ξ
cond, meaning that if all antecedents ηi of a deduction step are

present and the conditions cond are satisfied, then the consequent ξ should be
generated by the parser. A set F ⊆ I of final items represent the recognition of
a sentence. A parsing schema is a parsing system parameterized by a grammar
and a sentence.

In order to describe the parsing algorithms for tree-based formalisms, we
must be able to represent the partial recognition of elementary trees. Parsing
algorithms for context-free grammars usually denote partial recognition of pro-
ductions by dotted productions. We can extend this approach to the case of
tree-based grammars by considering each elementary tree γ as formed by a set
of context-free productions P(γ): a node N γ and its children Nγ

1 . . . Nγ
g are rep-

resented by a production Nγ → Nγ
1 . . . Nγ

g . Thus, the position of the dot in the
tree is indicated by the position of the dot in a production in P(γ). The elements
of the productions are the nodes of the tree.

To simplify the description of parsing algorithms we consider an additional
production > → Rα for each α ∈ I and the two additional productions > → Rβ

and Fβ → ⊥ for each β ∈ A, where Rβ and Fβ correspond to the root node and
the foot node of β, respectively. After disabling > and ⊥ as adjunction nodes
the generative capability of the grammars remains intact. We introduce also the
following notation: given two pairs (p, q) and (i, j) of integers, (p, q) ≤ (i, j) is
satisfied if i ≤ p and q ≤ j and given two integers p and q we define p∪ q as p if
q is undefined and as q if p is undefined, being undefined in other case.

2 A Mixed Parser for TIG and TAG

In this section we define a parsing system Mix = 〈IMix,HMix,DMix〉 correspond-
ing to a mixed parsing algorithm for TAG and TIG in which the adjunction of
strongly left and strongly right auxiliary trees1 will be managed by specialized
deduction steps, the rest of adjunctions will be managed with the classical de-
duction steps included in most of TAG parsers [1].

For Mix, we consider a set of items IMix = I
(a)
Mix ∪ I

(b)
Mix ∪ I

(c)
Mix formed by

the union of the following subsets:

– A subset I
(a)
Mix with items of the form [Nγ → δ • ν, i, j | p, q | adj] such that

Nγ → δν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤ j, (p, q) = (−,−) or (p, q) ≤ (i, j),
and adj ∈ {true, false}. The two indices with respect to the input string i
and j indicate the portion of the input string that has been spanned from
δ (see figure 3). If γ ∈ A, p and q are two indices with respect to the input
string that indicate that part of the input string recognized by the foot

1 Given the set A of a TAG, we can determine the set ASL as follows: firstly, we
determine the set AL examining the frontier of the trees in A and we set ASL := AL;
secondly, we eliminate from ASL those trees that permit adjunctions on nodes to
the right of their spine; and thirdly, we iteratively eliminate from ASL those trees
that allow adjoining trees in A − ASL on nodes of their spine. ASR is determined
in an analogous way.

γ
N

δ

R
γ

ν

i jqp

γ
F

Fig. 3. Graphical representation of items

node of γ if it is a descendant of δ. In other case p = q = − representing
they are undefined. Therefore, this kind of items satisfy one of the following
conditions:

1. γ ∈ A − (ASL ∪ ASR), δ 6= ε, (p, q) 6= (−,−) and δ spans the string
ai+1 . . . ap Fγ aq+1 . . . aj

2. δ 6= ε, (p, q) = (−,−) and δ spans the string ai+1 . . . aj .

The last boolean component of items is used to avoid several adjunctions on
a node. A value of true indicates that an adjunction has taken place on the
node Nγ and therefore further adjunctions on the same node are forbidden. If
adj = true and ν 6= ε, it means that a strongly left auxiliary tree β ∈ AL has
been adjoined at Nγ . If adj = true and ν = ε, it means that an auxiliary tree
has been adjoined at Nγ . A value of false indicates that no adjunction was
performed on that node. In this case, during future processing this item can
play the role of the item recognizing the excised part of an elementary tree
to be attached to the foot node of a right auxiliary tree. As a consequence,
only one adjunction can take place on a node, as is prescribed by the tree
adjoining grammar formalism.

– A subset I
(b)
Mix with items of the form [Nγ → •υ, j, j | −,− | false] such that

Mγ → δν ∈ P(γ), γ ∈ I ∪ A and 0 ≤ i ≤ j. The last boolean component
indicates any tree has been adjoined at N γ .

– A subset I
(b)
Mix with items of the form [Nγ → •υ, i, j | −,− | true] such that

Mγ → δν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤ j and there exists a β ∈ ASL such
that β ∈ adj(Nγ) and Rβ spans ai+1 . . . aj (i.e. β has been adjoined at Nγ).
In this case, i and j indicate the portion of the input string spanned by the
left auxiliary tree adjoined at Nγ .

The hypotheses defined for this parsing system encode the input string in
the standard way: HMix =

{

[a, i − 1, i] | a = ai, 1 ≤ i ≤ n
}

.

The set of deduction steps is formed by the following subsets:

DMix = DInit
Mix ∪ DScan

Mix ∪ Dε
Mix ∪ DPred

Mix ∪ DComp
Mix ∪

DAdjPred
Mix ∪ DFootPred

Mix ∪ DFootComp
Mix ∪ DAdjComp

Mix ∪

DLAdjPred
Mix ∪ DLAdjComp

Mix ∪ DRAdjPred
Mix ∪ DRAdjComp

Mix ∪ DLRFoot
Mix

The parsing process starts by creating the items corresponding to productions
having the root of an initial tree as left-hand side and the dot in the leftmost
position of the right-hand side:

DInit
Mix =

[> → •Rα, 0, 0 | −,− | false]
α ∈ I ∧ S = label(Rα)

Then, a set of deductive steps in DPred
Mix and DComp

Mix traverse each elementary
tree while steps in DScan

Mix and Dε
Mix scan input symbols and the empty symbol,

respectively:

DPred
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj]

[Mγ → •υ, j, j | −,− | false]

nil ∈ adj(Mγ) ∨
(∃β ∈ ASL ∪ ASR, β ∈ adj(Mγ))

DComp
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj],
[Mγ → υ•, j, k | p′, q′ | adj′]

[Nγ → δMγ • ν, i, k | p ∪ p′, q ∪ q′ | adj]

with (nil ∈ adj(Mγ) ∧ adj′ = false) ∨
(∃β ∈ A, β ∈ adj(Mγ) ∧ adj′ = true)

DScan
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj],
[a, j, j + 1]

[Nγ → δMγ • ν, i, j + 1 | p, q | adj]
a = label(Mγ)

Dε
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj]

[Nγ → δMγ • ν, i, j | p, q | adj]
ε = label(Mγ)

The rest of steps are in charge of managing adjunction operations. If a strongly
left auxiliary tree β ∈ ASL can be adjoined at a given node Mγ , a step in
DLAdjPred

Mix starts the traversal of β. When β has been completely traversed, a

step in DLAdjComp
Mix starts the traversal of the subtree corresponding to M γ and

sets the last element of the item to true in order to forbid further adjunctions
on this node.

DLAdjPred
Mix =

[Mγ → •υ, i, i | −,− | false]

[> → •Rβ , i, i | −,− | false]
β ∈ adj(Mγ) ∧ β ∈ ASL

DLAdjComp
Mix =

[Mγ → •υ, i, i | −,− | false],
[> → Rβ•, i, j | −,− | false]

[Mγ → •υ, i, j | −,− | true]
β ∈ ASL ∧ β ∈ adj(Mγ)

If a strongly right auxiliary tree β ∈ ASR can be adjoined at a given node Mγ ,
when the subtree corresponding to this node has been completely traversed, a
step in DRAdjPred

Mix starts the traversal of the tree β. When β has been completely

traversed, a step in DRAdjComp
Mix updates the input positions spanned by M γ

taking into account the part of the input string spanned by β, and sets the last
element of the item to true in order to forbid further adjunctions on this node.

DRAdjPred
Mix =

[Mγ → υ•, i, j | p, q | false]

[> → •Rβ , j, j | −,− | false]
β ∈ ASR ∧ β ∈ adj(Mγ)

DRAdjComp
Mix =

[Mγ → υ•, i, j | p, q | false],
[> → Rβ•, j, k | −,− | false]

[Mγ → υ•, i, k | p, q | true]
β ∈ ASR ∧ β ∈ adj(Mγ)

No special treatment is given to the foot node of strongly left and right auxiliary
trees and so, it is simply skipped by a step in the set DLRFoot

Mix .

DLRFoot
Mix =

[Fβ → •⊥, j, j, false]

[Fβ → ⊥•, j, j, false]
β ∈ ASL ∪ ASR

A step in DAdjPred
Mix predicts the adjunction of an auxiliary tree β ∈ A− (ASL ∪

ASR) in a node of an elementary tree γ and starts the traversal of β. Once the
foot of β has been reached, the traversal of β is momentary suspended by a step
in DFootPred

Mix , which re-takes the subtree of γ which must be attached to the foot
of β. At this moment, there is no information available about the node in which
the adjunction of β has been performed, so all possible nodes are predicted.

When the traversal of a predicted subtree has finished, a step in DFootComp
Mix re-

takes the traversal of β continuing at the foot node. When the traversal of β is

completely finished, a deduction step in DAdjComp
Mix checks if the subtree attached

to the foot of β corresponds with the adjunction node. The adjunction if finished

by a step in DComp
Mix , taking into account that p′ and q′ are instantiated if and

only if the adjunction node is on the spine of γ. It is interesting to remark that
we follow the approach of [5], splitting the completion of adjunction between

DAdjComp
Mix and DComp

Mix .

DAdjPred
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ A − (ASL ∪ ASR) ∧ β ∈ adj(Mγ)

DFootPred
Mix =

[Fβ → •⊥, k, k | −,− | false]

[Mγ → •υ, k, k | −,− | false]
β ∈ A − (ASL ∪ ASR) ∧ β ∈ adj(Mγ)

DFootComp
Mix =

[Fβ → •⊥, k, k | −,− | false],
[Mγ → υ•, k, l | p′, q′ | false]

[Fβ → ⊥•, k, l | k, l | false]
β ∈ A − (ASL ∪ ASR) ∧ β ∈ adj(Mγ)

DAdjComp
Mix =

[> → Rβ•, j, m | k, l | false],
[Mγ → υ•, k, l | p′, q′ | false]

[Mγ → υ•, j, m | p′, q′ | true]
β ∈ A − (ASL ∪ ASR) ∧ β ∈ adj(Mγ)

The input string belongs to the language defined by the grammar if a final
item in the set F =

{

[> → Rα•, 0, n | −,− | false] | α ∈ I ∧ S = label(Rα)
}

is generated.

3 Complexity

The worst-case space complexity of the algorithm is O(n4), as at most four input
positions are stored into items corresponding to auxiliary trees belonging to A−
(ASL ∪ASR). Initial trees and strongly left and right auxiliary trees contribute
O(n2) to the final result. With respect to the worst-case time complexity:

– TIG adjunction, the adjunction of a strongly left or right auxiliary tree on
a node of a tree belonging to I ∪ASL ∪ASR, is managed in O(n3) by steps

in DRAdjComp
Mix and DComp

Mix .

– Full TAG adjunction is managed in O(n6) by deduction steps in DAdjComp
Mix ,

which are in charge of dealing with auxiliary trees belonging to A− (ASL ∪
ASR). In fact, O(n6) is only attained when a wrapping auxiliary tree is
adjoined on a spine node of a wrapping auxiliary tree. The adjunction of
a wrapping auxiliary tree on a right node of a wrapping auxiliary tree is
managed in O(n5) due to deduction steps in DComp

Mix . The same complexity
is attained by the adjunction of a strongly right auxiliary tree on a spine or
right node of a wrapping auxiliary tree, due to deduction steps in DRAdjComp

Mix .
– Other cases of adjunction, e.g. the adjunction of a strongly left or right

auxiliary tree on a spine node of a tree belonging to (AL−ASL)∪(AR−ASR),
are managed in O(n4).

4 Experimental Results

We have incorporated the parsing algorithms described in this paper into a naive
implementation in Prolog of the deductive parsing machine presented in [7].

As a first experiment, we have compared the performance of the Earley-
like parsing algorithms for TIG [6] and TAG [1] with respect to TIGs. For this
purpose, we have designed two artificial TIGs Gl (with ASR = ∅) and Gr (with
ASL = ∅). For a TIG, the time complexity of the adjunction completion step of
a TAG parser is O(n4), in contrast with the O(n2) and O(n3) complexities of
left and right adjunction completion for a TIG parser, respectively. Therefore,
we expected the TIG parser to be considerably faster than the TAG parser. In
effect, for Gl we have observed that the TIG parser is up to 18 times faster than
the TAG parser, but in the case of Gr the difference becomes irrelevant.

These results have been corroborated by a second experiment performed on
artificial TAGs with the Mixed (Mix) and the TAG parser: the performance of
the Mixed parser improves when strongly left auxiliary trees are involved in the
analysis of the input string.

Table 1. XTAG results, in seconds, for the TAG and Mixed parsers

Sentence TAG Mixed Reduction

Srini bought a book 0.61 0.49 19.67%
Srini bought Beth a book 0.77 0.71 7.79%

Srini bought a book at the bookstore 0.94 0.93 1.06%
he put the book on the table 0.83 0.71 14.46%

the sun melted the ice 0.71 0.66 7.04%
the ice melted 0.44 0.38 13.64%

Elmo borrowed a book 0.55 0.49 10.91%
a book borrowed 0.39 0.33 15.38%

he hopes Muriel wins 0.93 0.77 17.20%
he hopes that Muriel wins 1.26 1.16 7.94%

the man who Muriel likes bought a book 2.14 1.48 30.84%
the man that Muriel likes bought a book 1.21 1.04 14.05%

the music should have been being played for the president 1.27 1.26 0.79%
Clove caught a frisbee 0.55 0.49 10.91%
who caught a frisbee 0.55 0.44 20.00%
what did Clove catch 0.60 0.55 8.33%

the aardvark smells terrible 0.44 0.38 13.64%
the emu thinks that the aardvark smells terrible 1.48 1.32 10.81%

who does the emu think smells terrible 0.99 0.77 22.22%
who did the elephant think the panda heard the emu said smells terrible

3.13 2.36 24.60%
Herbert is more livid than angry 0.50 0.44 12.00%

Herbert is more livid and furious than angry 0.50 0.50 0.00%

In a third experiment, we have taken a subset of the XTAG grammar [3],
consisting of 27 elementary trees that cover a variety of English constructions:
relative clauses, auxiliary verbs, unbounded dependencies, extraction, etc. In
order to eliminate the time spent by unification, we have not considered the
feature structures of elementary trees. Instead, we have simulated the features
using local constraints. Every sentence has been parsed without previous filtering
of elementary trees. Table 1 shows the results of this experiment. The application
of the Mixed parser results in a reduction in time that varies in percentage from
31% to 0%, depending on the kind of trees involved in the analysis of each
sentence.

5 Conclusion

We have defined a parsing algorithm which reduces the practical complexity of
TAG parsing by taking into account that a large part of actual TAG grammars
can be managed as a TIG.

This parsing algorithm does not preserve the correct prefix property [5]. It is
possible to obtain a variant satisfying this property by means of the introduction
of an additional element h into items, which is used to indicate the position of

the input string in which the traversal of the elementary tree involved in each
item was started. The worst-case space complexity increases to O(n5) but the
worst-case time complexity remains O(n6) if we modify steps AdjComp0 and
Comp as indicated in [5].

The performance of the algorithm could be improved by means of the appli-
cation of practical optimizations, such as the replacement of the components p

and q of items [Nγ → δ • ν, i, j | p, q | adj] ∈ I
(a)
Mix by the list of all adjunctions

that are still under completion on Nγ [2], albeit this modification can increase
the worst-case complexity of the algorithm.

Acknowledgements

Supported in part by Plan Nacional de Investigación Cient́ıfica, Desarrollo e
Innovación Tecnológica (TIC2000-0370-C02-01), Ministerio de Ciencia y Tec-
noloǵıa (HP2001-0044) and Xunta de Galicia (PGIDT01PXI10506PN).

References

1. Miguel A. Alonso, David Cabrero, Eric de la Clergerie, and Manuel Vilares. Tabular
algorithms for TAG parsing. In Proc. of EACL’99, Ninth Conference of the European
Chapter of the Association for Computational Linguistics, pages 150–157, Bergen,
Norway, June 1999. ACL.

2. Eric de la Clergerie. Refining tabular parsers for TAGs. In Proceedings of Lan-
guage Technologies 2001: The Second Meeting of the North American Chapter of
the Association for Computational Linguistics (NAACL’01), pages 167–174, CMU,
Pittsburgh, PA, USA, June 2001.

3. Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas, and Martin Zaidel.
XTAG system — a wide coverage grammar for English. In Proc. of the 15th Inter-
national Conference on Computational Linguistics (COLING’94), pages 922–928,
Kyoto, Japan, August 1994.

4. Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of Formal Languages. Vol 3: Beyond
Words, chapter 2, pages 69–123. Springer-Verlag, Berlin/Heidelberg/New York,
1997.

5. Mark-Jan Nederhof. The computational complexity of the correct-prefix property
for TAGs. Computational Linguistics, 25(3):345–360, 1999.

6. Yves Schabes and Richard C. Waters. Tree insertion grammar: A cubic-time
parsable formalism that lexicalizes context-free grammar without changing the trees
produced. Computational Linguistics, 21(4):479–513, December 1995. Also as Tech-
nical Report TR-94-13, June 1994, Mitsubishi Electric Research Laboratories, Cam-
bridge, MA, USA.

7. Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming, 24(1–2):3–36,
July-August 1995.

8. Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of
Parsing Algorithms. Texts in Theoretical Computer Science — An EATCS Series.
Springer-Verlag, Berlin/Heidelberg/New York, 1997.

