
BIDIRECTIONAL AUTOMATA FOR

TREE ADJOINING GRAMMARS

Miguel A. Alonso

Manuel Vilares

Depto. de Computación
Universidad de La Coruña

Campus de Elviña s/n
15071 La Coruña (Spain)
{alonso,vilares}@udc.es

Vı́ctor J. Dı́az

Depto. de Lenguajes y Sist. Informáticos
Universidad de Sevilla

Avda. Reina Mercedes s/n
41012 Sevilla (Spain)

vjdiaz@lsi.us.es

Abstract

We define a new model of automata for the description of bidirectional parsing strategies for tree

adjoining grammars and a tabulation mechanism that allow them to be executed in polynomial time.

This new model of automata provides a modular way of describing bidirectional parsing strategies for

TAG, separating the description of a strategy from its execution.

1 Introduction

Bidirectional parsing strategies for Tree Adjoining Grammars (TAG) show a good performance, partic-

ularly when applied to linguistically motivated grammars [5]. These strategies are usually implemented

as tabular parsers [8, 14, 6], sharing as common characteristics the use of items to represent traces

of derivations and the use of inference rules to derive new items from existing ones. Regrettably, for

most parsers it is difficult to separate the tabulation strategy from the parsing strategy.

A promising way of simplifying the task of designing correct and efficient parsing algorithms is to

apply well-known techniques from the realm of context-free parsing, which allow tabulation to be

seen separately from the parsing strategy: the actual parsing strategy can be described by means of

the construction of a non-deterministic pushdown automaton, and tabulation is introduced by means

of some generic mechanism such as memoization. The construction of parsers in this way allows

more straightforward proofs of correctness and makes parsing strategies easier to understand and to

implement.

This approach has been successfully applied to the design of parsing algorithms for TAG that read

the input string left-to-right [1, 3, 10, 11]. In this paper, we define new models of automata which can

start reading the input string in any position, spanning to the left and to the right to include substrings

which were themselves read in the same bidirectional way. Tabulation techniques are provided in order

to execute efficiently these automata.

This paper is outlined as follows. The rest of the introduction is a presentation of tree adjoining

grammars. Section 2 introduces bidirectional push-down automata, showing how they can be used

to define bidirectional parsers for context-free grammars. Section 3 extends the model of automata

developed in the previous section to define a new model of automata suitable for defining bidirectional

parsing strategies for TAG. Section 4 presents final conclusions.

1.1 Tree Adjoining Grammars

A Context-Free Grammar (CFG) is a tuple (VN , VT , S, P), where VN is a finite set of non-terminal

symbols, VT a finite set of terminal symbols, S ∈ VN is the axiom of the grammar, and P is a finite set

of productions (rewriting rules) of the form A → δ with A ∈ VN and δ ∈ (VT ∪ VN)∗. Tree Adjoining

Grammars [7] are an extension of context-free grammars that use trees instead of productions as

the primary representing structure. Formally, a TAG is a tuple (VN , VT , S, I,A), where VN , VT and

S ∈ VN are defined as for CFG, I a finite set of initial trees and A is a finite disjoint set of auxiliary

trees. I ∪A is the set of elementary trees. Internal nodes are labeled by non-terminals and leaf nodes

by terminals or the empty string ǫ, except for just one leaf per auxiliary tree (the foot) which is labeled

by the same non-terminal used as the label of its root node. The path in an auxiliary tree from the

root node to the foot node is called the spine of the tree.

New trees are derived by adjoining: let γ be a tree containing a node Nγ labeled by A and let β

be an auxiliary tree whose root and foot nodes are also labeled by A. Then, the adjoining of β at the

adjunction node Nγ is obtained by excising the subtree of γ with root Nγ , attaching β to Nγ and

attaching the excised subtree to the foot of β.

The operation of substitution does not increase the generative power of the formalism but it is

usually considered when we are dealing with lexicalized tree adjoining grammars. In this case, non-

terminals can also label leaf nodes (called substitution nodes) of elementary trees. An initial tree can

be substituted at a substitution node if its root is labeled by the same non-terminal that labels the

substitution node.

2 Bidirectional Push-Down Automata

Push-Down Automata (PDA) are the operational devices for parsing context-free grammars. Follow-

ing [4], we define a PDA as a tuple (VT , VS ,Θ, $0, $f) where VT is a finite set of terminal symbols, VS

is a finite set of stack symbols, $0 ∈ VS is the initial stack symbol, $f ∈ VS is the final stack symbol

and Θ is a finite set of SWAP, PUSH and POP transitions. A configuration of a PDA is usually

defined as a pair (ξ, al . . . an), where ξ ∈ V ∗

S is the stack attained and al . . . an the part of the input

string a1 . . . an to be read. We consider an alternative and equivalent definition in which the position

l is stored in the top element of ξ. Thus, a configuration is given by the contents of ξ̂, a stack of

pairs in VS ×N.1 The initial configuration is ($0, 0). Other configurations are attained by applying

transitions as follows:

• The application of a SWAP transition of the form C
a

7−→ F to a configuration ξ̂(C, l) yields a

configuration ξ̂(F, l + |a|) as a result of replacing C by F and scanning the terminal a = al+1 or the

empty string a = ǫ.

• The application of a PUSH transition of the form C 7−→ C F to a configuration ξ̂(C, l) yields a

configuration ξ̂(C, l)(F, l) as a result of pushing F onto C.

• The application of a POP transition of the form CF 7−→ G to a configuration ξ̂(C, l)(F,m) yields

a configuration ξ̂(G,m) as a result of popping C and F , which are replaced by G.

1This pairs are called modes in [2].

where C,F,G ∈ VS and a ∈ VT ∪ {ǫ}. An input string a1 . . . an is successfully recognized by a PDA if

the final configuration ($0, 0)($f , n) is attained. Only SWAP transitions can scan elements from the

input string. This is not a limitation, as a scanning push transition C
a

7−→ C F could be emulated

by the consecutive application of two transitions C 7−→ C F ′ and F ′
a

7−→ F , while a scanning pop

transition C F
a

7−→ G could be emulated by C F 7−→ G′ and G′
a

7−→ G, where F ′ and G′ are fresh

stack symbols.

We call transitions SWAP, PUSH and POP r-transitions as they can only read the input string

from the left to the right. Thus, push-down automata can only be used to implement unidirectional

parsing strategies that read the input string in the same way.

Bidirectional parsing strategies can start computations at any position of the input string and can

span to the right and to the left to include substrings which were scanned in a bidirectional way by

some subcomputations. As a first step towards the definition of a Bidirectional Push-Down Automata

(BPDA), we must adapt configurations in order to be able to represent the discontinuous recognition

of the input string. Thus, configurations of a BPDA will be given by the contents of Ξ, a stack of

triples in VS × N × N. The initial configuration is ($0, 0, 0). Other configurations are attained by

applying transitions as follows:

• The application of a SWAPR transition of the form C
a

7−→R F to a configuration Ξ(C, k, l) yields a

configuration Ξ(F, k, l + |a|) as a result of replacing C by F and scanning the terminal a = al+1 or

the empty string a = ǫ to the right of the substring spanned by C.

• The application of a SWAPL transition of the form C
a

7−→L F to a configuration Ξ(C, k, l) yields a

configuration Ξ(F, k − |a|, l) as a result of replacing C by F and scanning the terminal a = ak or

the empty string a = ǫ to the left of the substring spanned by C.

• The application of a PUSHR transition of the form C 7−→R C F to a configuration Ξ(C, k, l) yields

a configuration Ξ(C, k, l)(F, l, l). It is expected that F will span a substring inmediatly to the right

of the substring spanned by C.

• The application of a PUSHL transition of the form C 7−→L C F to a configuration Ξ(C, k, l) yields

a configuration Ξ(C, k, l)(F, k, k). It is expected that F will span a substring inmediatly to the left

of the substring spanned by C.

• The application of a PUSHU transition of the form C
a

7−→U C F to a configuration Ξ(C, k, l) yields

a configuration Ξ(C, k, l)(F,m,m + |a|) as a result of pushing F onto C and scanning the terminal

a = am+1 or the empty string a = ǫ. PUSHU transitions are undirected in the sense that the

substring spanned by F is not necessarily adjacent to the substring spanned by C.

• The application of a POPR transition of the form CF 7−→R G to a configuration Ξ(C, k, l)(F, l,m)

yields a configuration Ξ(G, k,m). The substring spanned by F is adjacent to the right of the

substring spanned by C.

• The application of a POPL transition of the form CF 7−→L G to a configuration Ξ(C, k, l)(F,m, k)

yields a configuration Ξ(G,m, l). The substring spanned by F is adjacent to the left of the substring

spanned by C.

[INIT] $0 7−→R $0 (S → • • δ)

[SCANa] (A → δ1 • δ2 • δ3)
a

7−→U (A → δ1 • δ2 • δ3) (B → ν • a • ω)

[SCANǫ] (A → δ1 • δ2 • δ3)
ǫ

7−→U (A → δ1 • δ2 • δ3) (B → ••)

[CONC-R] (A → ν • δ1 • δ2ω) (A → νδ1 • δ2 • ω) 7−→R (A → ν • δ1δ2 • ω)

[CONC-L] (A → νδ1 • δ2 • ω) (A → ν • δ1 • δ2ω) 7−→L (A → ν • δ1δ2 • ω)

[INC] (B → •δ•)
ǫ

7−→R (A → ν • B • ω)

Table 1: Compilation schema for a bottom-up bidirectional strategy

An input string a1 . . . an is successfully recognized by a PDA if the final configuration

($0, 0, 0)($f , 0, n) is attained. SWAPR, PUSHR and POPR transitions are the r-transitions corre-

sponding to unidirectional PDA. SWAPL, PUSHL and POPL transitions are l-transitions that advance

“to the left” in the reading of the input string. However, the union of r-transitions and l-transitions is

not sufficient to implement bidirectional parsers, we need PUSHU transitions of the form C
a

7−→U C F

to start subcomputations at any position of the input string. In any computation recognizing the

input string, we guarantee that each terminal in the input string is read only once by means of the

definition of SWAPR and SWAPL transitions (they can not re-read elements which are in the span

of the top element of the stack) and the definition of POPR and POPL transitions (they can not pop

stack elements spanning overlapping substrings). Thus, BPDA accept exactly the class of context-free

languages.

We define a Bidirectional Push-Down Automata (BPDA) as a tuple (VT , VS ,ΘBPDA, $0, $f) with

ΘBPDA containing SWAPR, SWAPL, PUSHR, PUSHL, POPR, POPL and PUSHU transitions. As

an example of the kind of parsers that can be implemented using BPDA, a compilation schema2 of a

context-free grammar into a bidirectional push-down automaton implementing a bottom-up bidirec-

tional parsing strategy is derived. In the resulting automaton, VT is equal to the set of terminals of

the source grammar, VS is the union of {$0, $f} and a set of dotted productions,3 the initial element

$0 is used to start computations, the final element $f is (S → •δ•) and ΘBPDA contains the set of

transitions derived by the compilation rules shown in table 1. [SCANa] and [SCANǫ] transitions are

in charge of recognizing terminals and epsilon productions, respectively. [CONC-R] and [CONC-L]

transitions concatenate a new part of a production to the right and to the left of the part already

recognized, respectively. Once a production having B on its left-hand side has been completely recog-

nized, a [INC] transition continues with the recognition of a production having B on its right-hand

side

The direct execution of a BPDA may be exponential with respect to the length of the input string

and may even loop. To get polynomial complexity, we must avoid duplicating computations by

tabulating traces of configurations called items. To determine the right amount of information to

keep in an item is the crucial point to get efficient executions. From [4] we know that extensions of

push-down automata can be tabulated using S2 items that store the two elements on the top of the

2A compilation schema is a set of rules indicating how to construct an automaton according to a given grammar and
parsing strategy.

3Dotted productions A → δ1 • δ2 • δ3 are used to indicate that the part δ2 has been recognized.

configuration stack. Therefore, we can use S2 items [B, i, j;C, k, l], indicating the part of the input

string ak+1 . . . al recognized by the top element C and the part ai+1 . . . aj recognized by the element

B placed immediately under C, to design a tabular framework for BPDA.4

New items are derived from existing items by means of inference rules of the form
antecedents
consequent

conditions similar to those used in grammatical deduction systems [12], meaning that

if all antecedents are present and conditions are satisfied then the consequent item should be gener-

ated. Conditions usually refer to transitions of the automaton and to terminals from the input string.

The set of inference rules for S2 items is the following:

[B, i, j;C, k, l]

[B, i, j;F, k, l + |a|]

C
a

7−→R F

a = al+1 or a = ǫ

[B, i, j;C, k, l]

[B, i, j;F, k − |a|, l]

C
a

7−→L F

a = ak or a = ǫ

[B, i, j;C, k, l]

[C, k, l;F, l, l]
C 7−→R C F

[B, i, j;C, k, l]

[C, k, l;F, k, k]
C 7−→L C F

[B, i, j;C, k, l]

[C, k, l;F,m,m + |a|]

C
a

7−→U C F

a = am+1 or a = ǫ

[C, k, l;F, l,m]

[B, i, j;C, k, l]

[B, i, j;G, k,m]
C F 7−→R G

[C, k, l;F,m, k]

[B, i, j;C, k, l]

[B, i, j;G,m, l]
C F 7−→L G

The worst case complexity with respect to the length n of the input string is O(n5).5 This complexity

can be reduced by considering more compact kinds of items. From [4] we know that if the results of

the non-deterministic computation are constrained only by bottom-up propagation of computed facts

(e.g. bottom-up and Earley strategies, but not pure top-down strategies) S1 items storing only the top

element of the configuration stack can be used to derive a sound and complete tabular interpretation.

In the case of BPDA, S1 items are of the form [C, k, l]. The set of inference rules for S1 items is

derived from the previous set, obtaining the following one:

[C, k, l]

[F, k, l + |a|]

C
a

7−→R F

a = al+1 or a = ǫ

[C, k, l]

[F, k − |a|, l]

C
a

7−→L F

a = ak or a = ǫ

[C, k, l]

[F, l, l]
C 7−→R C F

[C, k, l]

[F, k, k]
C 7−→L C F

[C, k, l]

[F,m,m + |a|]

C
a

7−→U C F

a = am+1 or a = ǫ

[F, l,m]

[C, k, l]

[G, k,m]
C F 7−→R G

[F,m, k]

[C, k, l]

[G,m, l]
C F 7−→L G

4For unidirectional push-down automata working with r-transitions, only positions j and l need to be considered.
For unidirectional PDA working with l-transitions only positions i and k are relevant. For BPDA the four positions i,
j, k and l are needed.

5This is the complexity of some tabular predictive bidirectional algorithms. See for example the predictive head-
corner parsing algorithm for context-free grammars described in [13, chapter 11].

This set of inference rules, when used to interpret an automaton resulting from the compilation

schema shown in table 1, is equivalent to the set of deduction steps of the parsing schema6 dVH1

defined in [13], corresponding to a bidirectional parsing strategy:

[SCANa]

[A → δ1 • δ2 • δ3, k, l]

[a,m,m + 1]

[B → ν • a • ω,m,m + 1]
[SCANǫ]

[A → δ1 • δ2 • δ3, k, l]

[B → ••,m,m]

[CONC-R]

[A → νδ1 • δ2 • ω, l,m]

[A → ν • δ1 • δ2ω, k, l]

[A → ν • δ1δ2 • ω, k,m]
[CONC-L]

[A → ν • δ1 • δ2ω,m, k]

[A → νδ1 • δ2 • ω, k, l]

[A → ν • δ1δ2 • ω,m, l]

[INC]
[B → •δ•, k, l]

[A → ν • B • ω, k, l]

considering that in the parsing schemata framework [13], the antecedent [A → δ1 • δ2 • δ3, k, l] in

[SCANa] and [SCANǫ] steps can be filtered out as it does not restrict their application, and that

steps [CONC-L] and [CONC-R] can be collapsed into a single one, as order of antecedents is not

relevant in a parsing schema.

3 Bidirectional Linear Indexed Automata

Linear Indexed Automata (LIA) [1, 11] are an extension of push-down automata in which each stack

symbol has been associated with a list of indices. Right-oriented Linear Indexed Automata (R-

LIA) [10] are a subclass of linear indexed automata that can be used to implement parsing strategies

for TAG in which adjunctions are recognized in a bottom-up way. As bidirectional parsing strategies

for TAG described in literature recognize adjunctions bottom-up [8, 14, 6], we take R-LIA as the

starting point for the development of a bidirectional automata for TAG.

We define Bidirectional Right-oriented Linear Indexed Automata (BR–LIA) as an extension of

BPDA in which each stack symbol has been associated with a list of indices. Formally, a BR-LIA is

a tuple (VT , VS , VI ,ΘBR−LIA, $0, $f) where VT is a finite set of terminal symbols, VS is a finite set of

stack symbols, VI is a finite set of indices, ΘBR−LIA is a finite set of transitions, $0 ∈ VS is the initial

stack symbol, and $f ∈ VS is the final stack symbol. A configuration of a BR–LIA is given by the

contents of Υ, a stack of triples in VS [V ∗

I] × N × N. The initial configuration is ($0[], 0, 0). Other

configurations are attained by applying the following set of transitions in ΘBR−LIA as follows:

• The application of a SWAPR[◦◦] transition of the form C[◦◦ p]
a

7−→R F [◦◦ q] to a configuration

Υ (C[η p], k, l) yields a configuration Υ (F [η q], k, l + |a|) as a result of replacing C[η p] by F [η q] and

scanning the terminal a = al+1 or the empty string a = ǫ to the right of the substring spanned by

C.

6In brief, a parsing schema is a deductive parsing system where inference rules are called deduction steps and
conditions on the existence of a given terminal am+1 are represented by means of special antecedent items of the form
[a, m, m + 1] called hypothesis.

• The application of a SWAPL[◦◦] transition of the form C[◦◦ p]
a

7−→L F [◦◦ q] to a configuration

Υ (C[η p], k, l) yields a configuration Υ (F [η q], k−|a|, l) as a result of replacing C[η p] by F [η q] and

scanning the terminal a = al+1 or the empty string a = ǫ to the left of the substring spanned by C.

• The application of a PUSHR[] transition of the form C[◦◦] 7−→R C[◦◦] F [] to a configuration

Υ (C[η], k, l) yields a configuration Υ (C[η], k, l) (F [], l, l) as a result of pushing F [] onto C[η]. It is

expected that F [] will span a substring inmediatly to the right of the substring spanned by C[η].

• The application of a PUSHL[] transition of the form C[◦◦] 7−→L C[◦◦] F [] to a configuration

Υ (C[η], k, l) yields a configuration Υ (C[η], k, l) (F [], k, k). It is expected that F [] will span a

substring inmediatly to the left of the substring spanned by C[η].

• The application of a PUSHU [] transition of the form C[◦◦]
a

7−→U C[◦◦] F [] to a configuration

Υ (C[η], k, l) yields a configuration Υ (C[η], k, l) (F [],m,m+|a|) as a result of pushing F [] onto C[η]

and scanning the terminal a = am+1 or the empty string a = ǫ. PUSHU transitions are undirected

in the sense that the substring spanned by F [] is not necessarily adjacent to the string spanned by

C[η].

• The application of a POPR[] transition of the form C[◦◦] F [] 7−→R G[◦◦] to a configuration

Υ (C[η], k, l) (F [], l,m) yields a configuration Υ (G[η], k,m) as a result of popping C[η] and F [],

which are replaced by G[η]. The substring spanned by F [] is adjacent to the right of the substring

spanned by C[η].

• The application of a POPL[] transition of the form C[◦◦] F [] 7−→L G[◦◦] to a configuration

Υ (C[η], k, l) (F [],m, k) yields a configuration Υ (G[η],m, l). The substring spanned by F [] is

adjacent to the left of the substring spanned by C[η].

• The application of a POPR[◦◦] transition of the form C[] F [◦◦] 7−→R G[◦◦] to a configuration

Υ (C[], k, l) (F [η], l,m) yields a configuration Υ (G[η], k,m) as a result of popping C[] and F [η],

which are replaced by G. The substring spanned by F [η] is adjacent to the right of the substring

spanned by C[].

• The application of a POPL[◦◦] transition of the form C[] F [◦◦] 7−→L G[◦◦] to a configuration

Υ (C[], k, l) (F [η],m, k) yields a configuration Υ (G[η],m, l). The substring spanned by F [η] is

adjacent to the left of the substring spanned by C[].

where C,F,G ∈ VS , a ∈ VT ∪ {ǫ}, η ∈ V ∗

I and ◦◦ represent any list of indices. In the case of

SWAPR[◦◦] and SWAPL[◦◦] transitions, p, q ∈ VI ∪{ǫ} and either p or q, or both, must be the empty

string. An input string a1 . . . an is successfully recognized by a BR–LIA if the final configuration

($0[], 0, 0)($f [], 0, n) is attained.

As an example of the kind of parsers that can be implemented using BR-LIA, a compilation schema

of a tree adjoining grammar into a bidirectional right-oriented linear indexed automata implementing

a bottom-up bidirectional parsing strategy is derived. We consider each elementary tree γ of a TAG

as formed by a set of context-free productions P(γ): a node Nγ and its g children N
γ
1 . . . Nγ

g are

represented by a production Nγ → N
γ
1 . . . Nγ

g . The elements of the productions are the nodes of the

tree, except for the case of elements belonging to VT ∪ {ε} in the right-hand side of a production.

Those elements may not have children and are not candidates to be adjunction nodes, so we identify

[INIT] $0[◦◦] 7−→R $0[◦◦] (⊤ → • • Rα)[]

α ∈ I, S = label(Rα)

[SCANa] (Nγ → δ1 • δ2 • δ3)[◦◦]
a

7−→U (Nγ → δ1 • δ2 • δ3)[◦◦] (Mγ′

→ ν • a • ω)[]

[SCANǫ] (Nγ → δ1 • δ2 • δ3)[◦◦]
ǫ

7−→U (Nγ → δ1 • δ2 • δ3)[◦◦] (Mγ′

→ ••)[]

[CONC-R] (Nγ → ν • δ1 • δ2ω)[◦◦] (Nγ → νδ1 • δ2 • ω)[] 7−→R (Nγ → ν • δ1δ2 • ω)[◦◦]

∀Mγ ∈ δ2, Mγ 6∈ spine(γ)

[CONC-L] (Nγ → νδ1 • δ2 • ω)[◦◦] (Nγ → ν • δ1 • δ2ω)[] 7−→L (Nγ → ν • δ1δ2 • ω)[◦◦]

∀Mγ ∈ δ1, Mγ 6∈ spine(γ)

[SCONC-R] (Nγ → ν • δ1 • δ2ω)[] (Nγ → νδ1 • δ2 • ω)[◦◦] 7−→R (Nγ → ν • δ1δ2 • ω)[◦◦]

∃Mγ ∈ δ2, Mγ ∈ spine(γ)

[SCONC-L] (Nγ → νδ1 • δ2 • ω)[] (Nγ → ν • δ1 • δ2ω)[◦◦] 7−→L (Nγ → ν • δ1δ2 • ω)[◦◦]

∃Mγ ∈ δ1, Mγ ∈ spine(γ)

[INC] (Mγ → •δ•)[◦◦]
ǫ

7−→R (Nγ → ν • Mγ • ω)[◦◦]

nil ∈ adj(Mγ)

[FOOT] (Mγ → •δ•)[◦◦]
ǫ

7−→R (Fβ → •⊥•)[◦◦Mγ]

β ∈ adj(Mγ)

[ADJ] (⊤ → •Rβ•)[◦◦Mγ]
ǫ

7−→R (Nγ → ν • Mγ • ω)[◦◦]

β ∈ adj(Mγ)

[SUBS] (⊤ → •Rα•)[◦◦]
ǫ

7−→R (Nγ → ν • Mγ • ω)[◦◦]

α ∈ subs(Mγ)

Table 2: Compilation schema for TAG

such nodes labeled by a terminal with that terminal. We use β ∈ adj(Nγ) to denote that a tree β ∈ A

may be adjoined at node Nγ . If adjunction is not mandatory at Nγ , then nil ∈ adj(Nγ). If a tree

α ∈ I may be substituted at node Nγ , then α ∈ subs(Nγ). We consider the additional productions

⊤ → Rα, ⊤ → Rβ and Fβ → ⊥ for each initial tree α and each auxiliary tree β, where Rα is the

root node of α and Rβ and Fβ are the root node and foot node of β, respectively.

In the resulting automata, VT is equal to the set of terminals of the source grammar, VS is the

union of {$0, $f} and a set of dotted productions, VI is the set of adjunction nodes, the initial element

$0 starts computations, the final element $f is (⊤ → •Rα•) such that α ∈ I and S = label(Rα),

and ΘBR−LIA contains the set of transitions derived by the compilation rules shown in table 2. The

function of the transitions produced by the compilation rules is as follows. A [INIT] transition is used

to start the computation; [SCANa] and [SCANǫ] transitions start the recognition of terminals and

epsilon productions, respectively; [CONC-R] and [CONC-L] transitions concatenate a new part of

a production to the right and to the left of the part already recognized, respectively, such that the new

part does not include nodes in the spine; [SCONC-R] and [SCONC-L] transitions deal with nodes

in the spine; [INC] transitions continue the bottom-up traversal of an elementary tree once a subtree

has been completely recognized; [FOOT] transitions start the bottom-up traversal of an elementary

tree at the foot node; [ADJ] transitions finish an adjunction when the bottom-up traversal of an

elementary tree has been completed; [SUBS] transitions deal with completed substitutions.

As in the case of BPDA, the direct execution of a BR-LIA may be exponential and even loop. To get

polynomial complexity, we can extend the tabular interpretations based on S2 and S1 items developed

for BPDA. Towards this aim, we need to extend items to store information about the indices lists.

Instead of storing a list in each item, we obtain a better sharing by storing only the top element and a

logical pointer to other items [10]. Following the chains of pointers it is possible to retrieve the entire

lists of indices. Therefore, S2 items are of the form [B, i, j;C, k, l | p | D, r, s;E, t, u], where p is the

top element of the list of indices associated with C, and (D, r, s;E, t, u) is the logical pointer. In the

case that C is associated with an empty list of indices, we let p be the dummy index ♦, D = E the

dummy stack symbol � and r = s = t = u the dummy input position −.

To the best of our knowledge, all bidirectional parsing algorithms for TAG presented in the literature

perform a bottom-up traversal of trees [14, 6, 9], which can be combined with an Earley-like traversal

of some parts of a tree [8]. Therefore, a tabular interpretation based on S1 items of the form [C, k, l |

p | E, t, u] is sound and complete for these strategies. The set of inference rules is the following one:

[C, k, l | p | E, t, u]

[F, k, l + |a| | p | E, t, u]

C[◦◦]
a

7−→R F [◦◦]

a = al+1 or a = ǫ

[C, k, l | p | E, t, u]

[F, k − |a|, l | p | E, t, u]

C[◦◦]
a

7−→L F [◦◦]

a = ak or a = ǫ

[C, k, l | p | E, t, u]

[F, k, l + |a| | q | C, k, l]

C[◦◦]
a

7−→R F [◦◦ q]

a = al+1 or a = ǫ

[C, k, l | p | E, t, u]

[F, k − |a|, l | q | C, k, l]

C[◦◦]
a

7−→L F [◦◦ q]

a = ak or a = ǫ

[C, k, l | p | E, t, u]

[E, t, u | q | E′, t′, u′]

[F, k, l + |a| | q | E′, t′, u′]

C[◦◦ p]
a

7−→R F [◦◦]

a = al+1 or a = ǫ

[C, k, l | p | E, t, u]

[E, t, u | q | E′, t′, u′]

[F, k − |a|, l | q | E′, t′, u′]

C[◦◦ p]
a

7−→L F [◦◦]

a = ak or a = ǫ

[C, k, l | p | E, t, u]

[F, l, l | ♦ | �,−,−]
C[◦◦] 7−→R C[◦◦] F []

[C, k, l | p | E, t, u]

[F, k, k | ♦ | �,−,−]
C[◦◦] 7−→L C[◦◦] F []

[C, k, l | p | E, t, u]

[F,m,m + |a| | ♦ | �,−,−]

C[◦◦]
a

7−→U C[◦◦] F []

a = am+1 or a = ǫ

[F, l,m | ♦ | �,−,−]

[C, k, l | p | E, t, u]

[G, k,m | p | E, t, u]
C[◦◦] F [] 7−→R G[◦◦]

[F,m, k | ♦ | �,−,−]

[C, k, l | p | E, t, u]

[G,m, l | p | E, t, u]
C[◦◦] F [] 7−→L G[◦◦]

[F, l,m | p | E, t, u]

[C, k, l | ♦ | �,−,−]

[G, k,m | p | E, t, u]
C[] F [◦◦] 7−→R G[◦◦]

[F,m, k | p | E, t, u]

[C, k, l | ♦ | �,−,−]

[G,m, l | p | E, t, u]
C[] F [◦◦] 7−→L G[◦◦]

The worst-case time complexity with respect to the length n of the input string is the standard

O(n6) complexity for TAG parsing.7 This set of inference rules, when applied to the set of transitions

7Using S2 items, the worst-case complexity increases to O(n12), which should be the complexity of a hypothetical

described by the previous compilation schema, gives as a result the parsing schema dVH for TAG

defined in [6], corresponding to a bottom-up bidirectional parsing strategy:

[SCANa]

[Nγ → δ1 • δ2 • δ3, k, l | p | E, t, u]

[a,m,m + 1]

[Mγ′ → ν • a • ω,m,m + 1 | ♦ | �,−,−]

[SCANǫ]
[Nγ → δ1 • δ2 • δ3, k, l | p | E, t, u]

[Mγ′ → ••,m,m | ♦ | �,−,−]

[CONC-R]

[Nγ → νδ1 • δ2 • ω, l,m | ♦ | �,−,−]

[Nγ → ν • δ1 • δ2ω, k, l | p | E, t, u]

[Nγ → ν • δ1δ2 • ω, k,m | p | E, t, u]

[CONC-L]

[Nγ → ν • δ1 • δ2ω,m, k | ♦ | �,−,−]

[Nγ → νδ1 • δ2 • ω, k, l | p | E, t, u]

[Nγ → ν • δ1δ2 • ω,m, l | p | E, t, u]

[SCONC-R]

[Nγ → νδ1 • δ2 • ω, l,m | p | E, t, u]

[Nγ → ν • δ1 • δ2ω, k, l | ♦ | �,−,−]

[Nγ → ν • δ1δ2 • ω, k,m | p | E, t, u]

[SCONC-L]

[Nγ → ν • δ1 • δ2ω,m, k | p | E, t, u]

[Nγ → νδ1 • δ2 • ω, k, l | ♦ | �,−,−]

[Nγ → ν • δ1δ2 • ω,m, l | p | E, t, u]

[INC]
[Mγ → •δ•, k, l | p | E, t, u]

[Nγ → ν • Mγ • ω, k, l | p | E, t, u]

[FOOT]
[Mγ → •δ•, k, l | p | E, t, u]

[Fβ → •⊥•, k, l | Mγ | Mγ → •δ•, k, l]

[ADJ]

[⊤ → •Rβ•, k, l | Mγ | Mγ → •δ•, t, u]

[Mγ → •δ•, t, u | q | E′, t′, u′]

[Nγ → ν • Mγ • ω, k, l | q | E′, t′, u′]

[SUBS]
[⊤ → •Rα•, k, l | p | E, t, u]

[Nγ → ν • Mγ • ω, k, l | p | E, t, u]

Antecedent [Nγ → δ1 • δ2 • δ3, k, l | p | E, t, u] in [SCANa] and [SCANǫ] can be filtered out as it

does not restrict the application of these steps. Steps [CONC-R] and [SCONC-L] can be collapsed

into a single step, and [CONC-L] and [SCONC-R] can also be collapsed into a single step, as the

predictive head-corner parsing algorithm for TAG, such as an extension of the predictive head-corner algorithm proposed
in [13, chapter 11] for context-free grammars.

order of antecedents is not important in a parsing schema. In the step [SUBS] it can be shown that

p = ♦, E = � and t = u = − since α is an initial tree.

It is interesting to remark that some components of items are redundant. This fact is clear when we

observe the [ADJ] step. The element Mγ → •δ• of the item [⊤ → •Rβ•, k, l | Mγ | Mγ → •δ•, t, u]

is redundant, because it is the production associated to Mγ , already present in the item. The element

Mγ is itself redundant, as the item is valid for all node Mγ of an elementary tree such that β can be

adjoined at Mγ . With this refinement of items, we obtain exactly the schema dVH for TAG proposed

in [6].

4 Conclusions

In order to provide a common framework for the description of bidirectional parsing algorithms for

TAG, we have defined a new class of bidirectional automata which works in polynomial time and

we have shown how tabular parsing algorithms can be derived from the automaton describing the

parsing strategy and the tabulation technique associated to the automata model. As illustration, we

have considered the case of the bottom-up bidirectional strategy for TAG proposed in [6] but the

approach can be applied to the other bidirectional strategies defined in the literature. A study of the

performance of this strategy and a comparison with other uni- and bidirectional strategies for TAG

can be found in [5]. The use of bidirectional automata to define parsers allowed us to concentrate

on the parsing strategy itself, abstracting for details of implementation such as the input positions

spanned by the elements in a production.

Acknowledgments

This research has been partially supported by Plan Nacional de Investigación Cient́ıfica, Desarrollo

e Innovación Tecnológica (Grant TIC2000-0370-C02-01), FEDER of EU (Grant 1FD97-0047-C04-02)

and Xunta de Galicia (Grants PGIDT99XI10502B and PGIDT01PXI10506PN).

References

[1] Miguel A. Alonso, Mark-Jan Nederhof, and Eric de la Clergerie. Tabulation of Automata for

Tree Adjoining Languages. Grammars, 3(2/3):89–110, 2000.

[2] Sylvie Billot and Bernard Lang. The structure of shared forest in ambiguous parsing. In Proc.

of the 27th Annual Meeting of the Association for Computational Linguistics, pages 143–151,

Vancouver, British Columbia, Canada, June 1989. ACL.

[3] Eric de la Clergerie and Miguel A. Alonso. A tabular interpretation of a class of 2-Stack Automata.

In COLING-ACL’98, 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics, Proceedings of the Conference,

volume II, pages 1333–1339, Montreal, Quebec, Canada, August 1998. ACL.

[4] Eric de la Clergerie and Bernard Lang. LPDA: Another look at tabulation in logic programming.

In Van Hentenryck, editor, Proc. of the 11th International Conference on Logic Programming

(ICLP’94), pages 470–486. MIT Press, June 1994.

[5] Vı́ctor J. Dı́az and Miguel A. Alonso. Comparing tabular parsers for Tree Adjoining Grammars.

In David S. Warren, Manuel Vilares, Leandro Rodŕıguez Liñares, and Miguel A. Alonso, editors,

Proc. of Second International Workshop on Tabulation in Parsing and Deduction (TAPD 2000),

pages 91–100, Vigo, Spain, September 2000.

[6] Vı́ctor J. Dı́az, Miguel A. Alonso, and Vicente Carrillo. Bidirectional parsing of TAG with-

out heads. In Proc. of 5th International Workshop on Tree Adjoining Grammars and Related

Formalisms (TAG+5), pages 67–72, Paris, France, May 2000.

[7] Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars. In Grzegorz Rozenberg and

Arto Salomaa, editors, Handbook of Formal Languages. Vol 3: Beyond Words, chapter 2, pages

69–123. Springer-Verlag, Berlin/Heidelberg/New York, 1997.

[8] Alberto Lavelli and Giorgio Satta. Bidirectional parsing of lexicalized tree adjoining grammars. In

Proceedings of the 5th Conference of the European Chapter of the Association for Computational

Linguistics (EACL’91), Berlin, Germany, April 1991. ACL.

[9] Patrice Lopez. Extended partial parsing for lexicalized tree grammars. In Proc. of the Sixth

International Workshop on Parsing Technologies (IWPT 2000), pages 159–170, Trento, Italy,

February 2000.

[10] Mark-Jan Nederhof. Linear indexed automata and tabulation of TAG parsing. In Proc. of First

Workshop on Tabulation in Parsing and Deduction (TAPD’98), pages 1–9, Paris, France, April

1998.

[11] Mark-Jan Nederhof. Models of tabulation for TAG parsing. In Proc. of the Sixth Meeting on

Mathematics of Language (MOL 6), pages 143–158, Orlando, Florida, USA, July 1999.

[12] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and implementation of

deductive parsing. Journal of Logic Programming, 24(1–2):3–36, July-August 1995.

[13] Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of Parsing

Algorithms. Texts in Theoretical Computer Science — An EATCS Series. Springer-Verlag,

Berlin/Heidelberg/New York, 1997.

[14] Gertjan van Noord. Head-corner parsing for TAG. Computational Intelligence, 10(4):525–534,

1994.

