
Bidirectional Push Down Automata

Miguel A. Alonso1, Vı́ctor J. Dı́az2, and Manuel Vilares1,3

1 Departamento de Computación, Universidade da Coruña
Campus de Elviña s/n, 15071 La Coruña, Spain

{alonso,vilares}@udc.es
http://www.grupocole.org

2 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)

vjdiaz@lsi.us.es
3 Escuela Superior de Ingenieŕıa Informática, Universidade de Vigo

Campus As Lagoas s/n, 32004 Orense, Spain
vilares@ei.uvigo.es

c© Springer-Verlag

Abstract. We define a new model of automata for the description of
bidirectional parsing strategies for context-free grammars and a tabula-
tion mechanism that allow them to be executed in polynomial time. This
new model of automata provides a modular way of defining bidirectional
parsers, separating the description of a strategy from its execution.

1 Introduction

The task of designing correct and efficient parsing algorithms can be simpli-
fied by separating the definition of the parsing strategy from its tabular execu-
tion. This can be accomplished through the use of automata: the actual parsing
strategy can be described by means of the construction of a non-deterministic
pushdown automaton, and tabulation is introduced by means of some generic
mechanism such as memoization. The construction of parsers in this way allows
more straightforward proofs of correctness and makes parsing strategies easier
to understand and implement.

This approach has been successfully applied to the design of parsing algo-
rithms for context-free grammars that read the input string left-to-right [5, 6]. In
this article, we define new models of push-down automata which can start read-
ing the input string in any position, spanning to the left and to the right to in-
clude substrings which were themselves read in the same bidirectional way. Tab-
ulation techniques are provided in order to execute efficiently these automata.

This article is outlined as follows. Section 2 introduces push-down automata.
A bidirectional extension of push-down automata is presented in section 3. Two
different tabular frameworks to execute efficiently bidirectional automata are
defined in Section 5. These frameworks are applied to predictive and bottom-up
head-corner parsing algorithms.

2 Push-Down Automata

A Context-Free Grammar (CFG) is a tuple (VN , VT , S, P), where VN is a finite
set of non-terminal symbols, VT a finite set of terminal symbols, S ∈ VN is the
axiom of the grammar, and P is a finite set of productions (rewriting rules) of
the form A → γ with A ∈ VN and γ ∈ (VT ∪VN)∗. Push-Down Automata (PDA)
are the operational devices for parsing CFG. Following [3], we define a PDA as
a tuple (VT , VS , Θ, $0, $f) where VT is a finite set of terminal symbols, VS is a
finite set of stack symbols, $0 ∈ VS is the initial stack symbol, $f ∈ VS is the
final stack symbol and Θ is a finite set of SWAP, PUSH and POP transitions. A
configuration of a PDA is usually defined as a pair (ξ, al . . . an), where ξ ∈ V ∗

S is
the stack attained and al . . . an the part of the input string a1 . . . an to be read.
We consider an alternative and equivalent definition of configuration in which
the position l is stored in the top element of ξ. Thus, a configuration is given by
the contents of ξ̂, a stack of pairs in VS ×N. The initial configuration is ($0, 0).
Other configurations are attained by applying transitions as follows:

– The application of a SWAP transition of the form C
a7−→ F to a configuration

ξ̂(C, l) yields a configuration ξ̂(F, l + |a|) as a result of replacing C by F and
scanning the terminal a = al+1 or the empty string a = ε.

– The application of a PUSH transition C 7−→ C F to a configuration ξ̂(C, l)
yields a configuration ξ̂(C, l)(F, l) as a result of pushing F onto C.

– The application of a POP transition of the form CF 7−→ G to a configuration
ξ̂(C, l)(F,m) yields a configuration ξ̂(G, m) as a result of popping C and F ,
which are replaced by G.

where C,F,G ∈ VS and a ∈ VT ∪{ε}. An input string w = a1 . . . an is succesfully
recognized by a PDA if the final configuration ($0, 0)($f , n) is attained.

Only SWAP transitions can scan elements from the input string. This is not
a limitation, as a scanning push transition C

a7−→ C F could be emulated by
the consecutive application of two transitions C 7−→ C F ′ and F ′ a7−→ F , while
a scanning pop transition C F

a7−→ G could be emulated by C F 7−→ G′ and
G′ a7−→ G, where F ′ and G′ are fresh stack symbols.

We call transitions SWAP, PUSH and POP r-transitions as they can only
read the input string from the left to the right. Thus, push-down automata
can only be used to implement unidirectional parsing strategies that read the
input string in the same way. As an example of the kind of parsers that can
be implemented, a compilation schema1 of a context-free grammar into a push-
down automaton implementing the Earley’s parsing strategy [4] is derived. In
the resulting automaton, VT is the set of terminals of the source grammar, VS is
the union of {$0, $f} and a set of dotted productions2, the initial element $0 is
used to start computations, the final element $f is (S → δ•) and Θ contains the

1 A compilation schema is a set of rules indicating how to construct an automaton
according to a given grammar and parsing strategy.

2 Dotted productions A → α•β are used to indicate that the part α of the production
has been recognized.

[INIT] $0
ε7−→ $0 (S → •α)

[PRED] (A → α •Bβ) 7−→ (A → α •Bβ) (B → •γ)

[SCAN] (A → α • aβ)
a7−→ (A → αa • β)

[COMP] (A → α •Bβ) (B → γ•) 7−→ (A → αB • β)

Fig. 1. Compilation schema for the Earley’s strategy

[B, j; C, l]

[B, j; F, l + |a|]
C

a7−→ F
a = al+1 or a = ε

[B, j; C, l]

[C, l; F, l]
C 7−→ C F

[C, l; F, m]
[B, j; C, l]

[B, j; G, m]
C F 7−→ G

[C, j, l]

[F, j, l + |a|]
C

a7−→ F
a = al+1 or a = ε

[C, j, l]

[F, l, l]
C 7−→ C F

[F, l, m]
[C, j, l]

[G, j, m]
C F 7−→ G

Fig. 2. Inference rules for PDA with S2 items (left-hand) and S1 items (right-hand)

set of transitions derived by the compilation rules shown in Fig. 1. A [INIT]
transition is in charge of starting the parsing process. [LPRED] transitions
predict a non-terminal B placed just after the dot in a given production. Once
a production having this non-terminal in its left-hand side has been completely
recognized, the dot is advanced by the application of a transition [COMP].
Terminals are recognized by [SCAN] transitions.

The direct execution of PDA may be exponential with respect to the length of
the input string and may even loop. To get polynomial complexity, we must avoid
duplicating computations by tabulating traces of configurations called items. The
amount of information to keep in an item is the crucial point to determine to
get efficient executions. Following [3] we know that S2 items, storing the two
elements placed on the top of the configuration stack, can be used to design
tabular interpretations which are sound and complete for any parsing strategy.

New items are derived from existing items by means of inference rules of
the form antecedents

consequent conditions similar to those used in grammatical deduction
systems [8], meaning that if all antecedents are present and conditions are sat-
isfied then the consequent item should be generated. Conditions usually refer to
transitions of the automaton and to terminals from the input string. The set of
inference rules for S2 items is shown in Fig. 2. Computations start with the item
[�, 0; $0, 0] and finish with the item [$0, 0; $f , n].

[INIT]
[$0, 0, 0]

[S → •α, 0, 0]

[PRED]
[A → α •Bβ, j, l]

[B → •γ, l, l]

[SCAN]

[A → α • aβ, j, l]
[a, l, l + 1]

[A → αa • β, j, l + 1]

[COMP]

[B → γ•, l, m]
[A → α •Bβ, j, l]

[A → αB • β, j, m]

Fig. 3. Deduction steps for the Earley’s algorithm

From [3] we also know that if the results of the non-deterministic compu-
tations are constrained only by bottom-up propagation of computed facts (e.g.
bottom-up and Earley strategies, but not pure top-down strategies) S1 items
storing only the top element of the configuration stack can be used to derive
a sound and complete tabular interpretation. The set of inference rules for S1

items is shown in Fig. 2.3 Computations start with the item [$0, 0, 0] and fin-
ish with [$f , 0, n]. Fig. 3 shows the set of deduction steps corresponding to the
parsing schema4 Earley obtained by applying these inference rules to an automa-
ton resulting from the compilation schema shown in Fig. 1. The worst-case time
complexity for the S2 and S1 inference rules and for the Earley schema is O(n3).

Although PDA can only be used to describe unidirectional strategies, their
tabulation technique can be extended to read the input string left-to-right, right-
to-left and bidirectionally [7]. This kind of bidirectional tabulation makes possi-
ble to implement robust parsers by means of PDA but it does not make possible
to specify bidirectional parsing strategies due to PDA transitions does not pro-
vide any way of controlling the direction of the parsing process.

3 Although the items involved in these inference rules are usually called S1 items,
actually they are not true S1 items but S1+ε items due to each item [C, j, l] stores
the top element (C, l) of the configuration stack plus the position j of the second
element (B, j) [2].

4 In brief, a parsing schema is a deductive parsing system where inference rules are
called deduction steps and conditions on the existence of a given terminal al+1 are
represented by means of special antecedent items of the form [a, l, l + 1] called hy-
pothesis.

3 Bidirectional Push-Down Automata

Bidirectional parsing strategies can start computations at any position of the
input string and can span to the right and to the left to include substrings
which were scanned in a bidirectional way by some subcomputations. As a first
step towards the definition of a Bidirectional Push-Down Automata (BPDA),
we must adapt configurations in order to be able to represent the discontinuos
recognition of the input string. Thus, configurations of a BPDA will be given by
the contents of Ξ, a stack of triples in VS ×N×N. The initial configuration is
($0, 0, 0). Other configurations are attained by applying transitions as follows:

– The application of a SWAPR transition of the form C
a7−→R F to a configu-

ration Ξ(C, k, l) yields a configuration Ξ(F, k, l+ |a|) as a result of replacing
C by F and scanning the terminal a = al+1 or the empty string a = ε to the
right of the substring spanned by C.

– The application of a SWAPL transition of the form C
a7−→L F to a configu-

ration Ξ(C, k, l) yields a configuration Ξ(F, k−|a|, l) as a result of replacing
C by F and scanning the terminal a = ak or the empty string a = ε to the
left of the substring spanned by C.

– The application of a PUSHR transition C 7−→R C F to a configuration
Ξ(C, k, l) yields a configuration Ξ(C, k, l)(F, l, l). It is expected that F will
span a substring inmediatly to the right of the substring spanned by C.

– The application of a PUSHL transition C 7−→L C F to a configuration
Ξ(C, k, l) yields a configuration Ξ(C, k, l)(F, k, k). It is expected that F will
span a substring inmediatly to the left of the substring spanned by C.

– The application of a PUSHU transition of the form C
a7−→U C F to a config-

uration Ξ(C, k, l) yields a configuration Ξ(C, k, l)(F,m, m + |a|) as a result
of pushing F onto C and scanning the terminal a = am+1 or the empty
string a = ε. PUSHU transitions are undirected in the sense that a is not
necessarily adjacent to the substring spanned by C.

– The application of a POPR transition of the form CF 7−→R G to a config-
uration Ξ(C, k, l)(F, l, m) yields a configuration Ξ(G, k,m). The substring
spanned by F is adjacent to the right of the substring spanned by C.

– The application of a POPL transition of the form CF 7−→L G to a config-
uration Ξ(C, k, l)(F,m, k) yields a configuration Ξ(G, m, l). The substring
spanned by F is adjacent to the left of the substring spanned by C.

An input string a1 . . . an is succesfully recognized by a BPDA if the final con-
figuration ($0, 0, 0)($f , 0, n) is attained. SWAPR, PUSHR and POPR transitions
are the r-transitions corresponding to unidirectional PDA. SWAPL, PUSHL and
POPL transitions are l-transitions that advance “to the left” in the reading of
the input string. However, the union of r-transitions and l-transitions is not suf-
ficient to implement bidirectional parsers, we need PUSHU transitions of the
form C

a7−→U C F to start subcomputations at any position of the input string.
We guarantee that, in any computation recognizing the input string, each ter-
minal in the input string is read only once by means of the definition of SWAPR

and SWAPL transitions (they can not re-read elements which are in the span
of the top element of the stack) and the definition of POPR and POPL transi-
tions (they can not pop stack elements spanning overlapping substrings). Pop
transitions also ensure we read the input string and not a permutation of it.

We define Bidirectional Push-Down Automata (BPDA) as a tuple
(VT , VS , ΘB, $0, $f) with ΘB containing SWAPR, SWAPL, PUSHR, PUSHL,
POPR, POPL and PUSHU transitions. As an example of the kind of parsers
that can be implemented using BPDA, a compilation schema of a context-free
grammar into a bidirectional push-down automaton implementing a predictive
head-corner parsing strategy is derived. Head-corner parsing strategies can be
applied to context-free grammars in which each production has an element of
the right-hand side marked as the head of the production. For empty produc-
tions A → ε, the empty string ε is considered the head of the production. The
head-corner relation >h on VN × (VN ∪ VT ∪ {ε}) is defined by A >h X if there
is a production A → αXβ with X the head of the production. If A → ε then
A >h ε. The transitive and reflexive closure of >h is denoted >∗

h. In the resulting
automaton, VT is the set of terminals of the source grammar, VS is the union
of {$0, $f}, the set of non-terminals of the source grammar and a set of dotted
productions A → α•β •γ used to indicate that the part β of the production has
been recognized; the initial element $0 is used to start computations; the final
element $f is (S → •δ•); and ΘB contains the set of transitions derived by the
compilation rules shown in Fig. 4. [LPRED] and [RPRED] transitions predict
a non-terminal to the left and to the right, respectively. Once a production having
this non-terminal in its left-hand side has been completely recognized, the dot is
advanced by the application of a pair of transitions [LCOMP1]-[LCOMP2] or
[RCOMP1]–[RCOMP2]. The head-corner of a given non-terminal is found by
[HCT] and [HCε] transitions. [HCN] transitions traverse backwards the chain
of head-corners of a given non-terminal. [LSCAN] and [RSCAN] transitions
recognize terminals to the left and to the right, respectively.

4 Context-free languages and BPDA

BPDA exactly accepts the class of context-free languages. Given a CFG G, the
language accepted by the bidirectional push-down automaton built following the
compilation schema shown in Fig. 4 is the language recognized by G. Therefore,
the class of context-free languages is included in the class of languages accepted
by BPDA. Given a BPDA A = (VT , VS , ΘB, $0, $f) we can construct a CFG
G = (VN , VT , S, P) where VN ∈ VS × VS , S = 〈$0, $f 〉 and the productions in P
are obtained from transitions in ΘB as follows:

– A production 〈E,F 〉 → 〈E,C〉 a for each C
a7−→R F ∈ ΘB and E ∈ VS .

– A production 〈E,F 〉 → a 〈E,C〉 for each C
a7−→L F ∈ ΘB and E ∈ VS .

– A production 〈C,F 〉 → ε for each C 7−→R C F ∈ ΘB and E ∈ VS .
– A production 〈C,F 〉 → ε for each C 7−→L C F ∈ ΘB and E ∈ VS .
– A production 〈C,F 〉 → a for each C

a7−→U C F ∈ ΘB and E ∈ VS .

[INIT] $0
ε7−→ $0 (S)

[HCT] (A)
b7−→U (A) (B → α • b • γ) A >∗

h B >h b

[HCN] (C → •δ•) ε7−→R (B → α • C • γ) B >h C

[HCε] (A)
ε7−→U (A) (B → ••) A >∗

h B

[LPRED] (B → αC • β • γ) 7−→L (B → αC • β • γ) (C)

[RPRED] (B → α • β • Cγ) 7−→R (B → α • β • Cγ) (C)

[LSCAN] (B → αa • β • γ)
a7−→L (B → α • aβ • γ)

[RSCAN] (B → α • β • aγ)
a7−→R (B → α • βa • γ)

[LCOMP1] (C) (C → •δ•) 7−→L (C → •δ•)

[LCOMP2] (B → αC • β • γ) (C → •δ•) 7−→L (B → α • Cβ • γ)

[RCOMP1] (C) (C → •δ•) 7−→R (C → •δ•)

[RCOMP2] (B → α • β • Cγ) (C → •δ•) 7−→R (B → α • βC • γ)

Fig. 4. Compilation schema for a predictive head-corner strategy

– A production 〈E,G〉 → 〈E,C〉〈C,F 〉 for each CF 7−→R G ∈ ΘB and E ∈ VS .
– A production 〈E,G〉 → 〈C,F 〉〈E,C〉 for each CF 7−→L G ∈ ΘB and E ∈ VS .

Applying induction in the length of the derivations, we can show that 〈$0, $f 〉
∗⇒

a1 . . . an if and only if a computation of A starting at ($0, 0, 0) attains a config-
uration ($0, 0, 0)($f , 0, n) reading a1 . . . an from the input string, i.e. G exactly
recognizes the language accepted byA. Therefore, the class of languages accepted
by BPDA is included in the class of context-free languages.

5 Tabulation of BPDA

As in the case of PDA, the direct execution of BPDA may be exponential with
respect to the length of the input string and may even loop. To solve this problem,
in this section we extend the S2 and S1 tabulation techniques to the case of
bidirectional push-down automata.

5.1 The S2 framework

From [3] we know that extensions of push-down automata can be tabulated by
using S2 items storing the two elements on the top of the configuration stack.
In the case of BPDA, S2 items are of the form [B, i, j;C, k, l], indicating the
part of the input string ak+1 . . . al recognized by the top element C and the
part ai+1 . . . aj recognized by the element B placed immediately under C. The

[B, i, j; C, k, l]

[B, i, j; F, k, l + |a|]
C

a7−→R F
a = al+1 or a = ε

[B, i, j; C, k, l]

[B, i, j; F, k − |a|, l]
C

a7−→L F
a = ak or a = ε

[B, i, j; C, k, l]

[C, k, l; F, l, l]
C 7−→R C F

[B, i, j; C, k, l]

[C, k, l; F, k, k]
C 7−→L C F

[B, i, j; C, k, l]

[C, k, l; F, m, m + |a|]
C

a7−→U C F
a = am+1 or a = ε

[C, k, l; F, l, m]
[B, i, j; C, k, l]

[B, i, j; G, k, m]
C F 7−→R G

[C, k, l; F, m, k]
[B, i, j; C, k, l]

[B, i, j; G, m, l]
C F 7−→L G

Fig. 5. Inference rules for S2 items

set of inference rules for S2 items is shown in Fig. 5. Computations start with
the item [�, 0, 0, ; $0, 0, 0] and finish with [$0, 0, 0; $f , 0, n]. The worst case time
complexity with respect to the length n of the input string is O(n5).

The application of this set of inference rules to an automaton resulting from
the compilation schema shown in Fig. 4 yields the set of deduction steps shown
in Fig. 6 (where Φ refers to a dotted production or $0) which is very close to
the set of deduction steps corresponding to the predictive head-corner parsing
schema pHC defined by Sikkel in [9, chapter 11], also working in O(n5) time
complexity. The main difference is that predictive steps of the schema pHC have
stronger constraints with respect to the part of the input string to be consid-
ered when seeking for a head-corner. A minor difference is that left-completer
and right completer steps have been splited into [LCOMP1]–[LCOMP2] and
[RCOMP1]–[RCOMP2] pairs.

5.2 The S1 framework

The complexity of the tabular framework can be reduced by considering more
compact kinds of item. From [3] we also know that a sound and complete tabular
interpretation for a given extension of push-down automata can be obtained
using S1 items that store the top element of the configuration stack. In the case
of BPDA, S1 items are of the form [C, k, l], storing the top element C with
the corresponding positions k and l of the substring spanned by it. The set of
inference rules for S1 items is derived from the set of inference rules for S2, as
is shown in Fig. 7. Computations start with the item [$0, 0, 0] and finish with
[$f , 0, n]. The worst case time complexity with respect to the length n of the
input string is O(n3).

As an example of the kind of strategies that can be implemented using the
S1 framework, we show in Fig. 8 the compilation schema of a context-free gram-
mar into a bidirectional push-down automaton implementing a bottom-up pre-

[INIT]
[�, 0, 0; $0, 0, 0]

[$0, 0, 0; S, 0, 0]

[HCT]

[Φ, s, t; A, l, r]
[b, j − 1, j]

[A, l, r; B → α • b • γ, j − 1, j]
A >∗

h B >h b

[HCN]
[A, l, r; C → •δ•, i, j]

[A, l, r; B → α • C • γ]
B >h C

[HCε]
[Φ, s, t; A, l, r]

[A, l, r; B → ••, j, j] A >∗
h B

[LPRED]
[A, l, r; B → αC • β • γ, i, j]

[B → αC • β • γ, i, j; C, i, i]

[RPRED]
[A, l, r; B → α • β • Cγ, i, j]

[B → α • β • Cγ, i, j; C, j, j]

[LSCAN]

[A, l, r; B → αa • β • γ, j, k]
[a, j − 1, j]

[A, l, r; B → α • aβ • γ, j − 1, k]

[RSCAN]

[A, l, r; B → α • β • aγ, i, j]
[a, j, j + 1]

[A, l, r; B → α • βa • γ, i, j + 1]

[LCOMP1]

[Φ, j, k; C, j, j]
[C, j, j; C → •δ • i, j]

[Φ, j, k; C → •δ • i, j]

[LCOMP2]

[A, l, r; B → αC • β • γ, j, k]
[B → αC • β • γ, j, k; C → •δ • i, j]

[A, l, r; B → α • Cβ • γ, i, k]

[RCOMP1]

[Φ, i, j; C, j, j]
[C, j, j; C → •δ • j, k]

[Φ, i, j; C → •δ • j, k]

[RCOMP2]

[A, l, r; B → α • β • Cγ, i, j]
[B → α • β • Cγ, i, j; C → •δ • j, k]

[A, l, r; B → α • βC • γ, i, k]

Fig. 6. Deduction steps for a predictive head-corner parsing schema

[C, k, l]

[F, k, l + |a|]
C

a7−→R F
a = al+1 or a = ε

[C, k, l]

[F, k − |a|, l]
C

a7−→L F
a = ak or a = ε

[C, k, l]

[F, l, l]
C 7−→R C F

[C, k, l]

[F, k, k]
C 7−→L C F

[C, k, l]

[F, m, m + |a|]
C

a7−→U C F
a = am+1 or a = ε

[F, l, m]
[C, k, l]

[G, k, m]
C F 7−→R G

[F, m, k]
[C, k, l]

[G, m, l]
C F 7−→L G

Fig. 7. Inference rules for S1 items

[INIT] $0
ε7−→ $0 (S → • • α)

[HCT] (A → δ1 • δ2 • δ3)
a7−→U (A → δ1 • δ2 • δ3) (B → α • a • γ)

[HCN] (A → •β•) ε7−→R (B → α •A • γ)

[HCε] (A → δ1 • δ2 • δ3)
b7−→U (A → δ1 • δ2 • δ3) (B → ••)

[LSCAN] (B → αa • β • γ)
a7−→L (B → α • aβ • γ)

[RSCAN] (B → α • β • aγ)
a7−→R (B → α • βa • γ)

[LCOMP] (B → αA • β • γ) (A → •δ•) 7−→L (B → α •Aβ • γ)

[RCOMP] (B → α • β •Aγ) (A → •δ•) 7−→R (B → α • βA • γ)

Fig. 8. Compilation schema for a bottom-up head-corner strategy

dictive head-corner parsing strategy. [HCT] and [HCε] transitions start the
bottom-up recognition of head-corners. [HCN] transitions traverse backwards
the head-corner relation. Terminals are recognized to the left and to the right
by [LSCAN] and [RSCAN] transitions, respectively. Once the right-hand side
of a production has been completely recognized, [LCOMP] and [RCOMP]
advance the dot of the production having the left-hand side of that rule to the
left or to the right of the dot, respectively.

When the S1 inference rules are applied to an automaton resulting from
the compilation schema shown in Fig. 8, we obtain the set of deduction steps
corresponding to the parsing schema buHC defined by Sikkel in [9, chapter 11],
as shown in Fig. 9, considering that in the parsing schemata framework [9] the
antecedent [A → δ1 • δ2 • δ3, l, r] in steps [HCT] and [HCε] can be filtered out
as it does not restrict the application of these steps.

[INIT]
[$0, 0, 0]

[S → • • α, 0, 0]

[HCT]

[A → δ1 • δ2 • δ3, l, r]
[a, j − 1, j]

[B → α • a • γ, j − 1, j]

[HCN]
[A → •β•, i, j]

[B → α •A • γ, i, j]

[HCε]
[A → δ1 • δ2 • δ3, l, r]

[B → ••, j, j]

[LSCAN]

[B → αa • β • γ, j, k]
[a, j − 1, j]

[B → α • aβ • γ, j − 1, k]

[RSCAN]

[B → α • β • aγ, i, j]
[a, j, j + 1]

[B → α • βa • γ, i, j + 1]

[LCOMP]

[A → •δ•, i, j]
[B → αA • β • γ, j, k]

[B → α •Aβ • γ, i, k]

[RCOMP]

[A → •δ•, j, k]
[B → α • β •Aγ, i, j]

[B → α • βA • γ, i, k]

Fig. 9. Deduction steps for a bottom-up head-corner parsing schema

6 Conclusions

In order to provide a common framework for the description of bidirectional
parsing algorithms for context-free grammars, we have defined a new class of
bidirectional push-down automata which works in polynomial time. We have
also shown how tabular parsing algorithms can be derived from the automa-
ton describing the parsing strategy, and the tabulation technique associated to
the automata model. As illustration, we have considered the case of the predic-
tive head-corner and bottom-up head-corner strategies proposed in [9] but the
approach can be applied to the other bidirectional strategies defined in the lit-
erature. This approach can also be extended to automata models for extensions

of context-free grammars. In this direction, we have investigated a bidirectional
version of Linear Indexed Automata for Tree Adjoining Grammars [1].

The use of bidirectional push-down automata to define parsers allowed us to
concentrate on the parsing strategy itself, abstracting for details of implementa-
tion such as the input positions spanned by a production or the information we
must track into items to guarantee the correctness of a parsing strategy.

Acknowledgements

This research has been partially supported by Plan Nacional de Investigación
Cient́ıfica, Desarrollo e Innovación Tecnológica (Grant TIC2000-0370-C02-01),
Ministerio de Ciencia y Tecnoloǵıa (Grant HP2001-0044), Xunta de Galicia
(Grants PGIDT01PXI10506PN and PGIDIT02PXIB30501PR) and Universi-
dade da Coruña.

References

1. Miguel A. Alonso, Vı́ctor J. Dı́az, and Manuel Vilares. Bidirectional automata for
tree adjoining grammars. In Proc. of the Seventh International Workshop on Parsing
Technologies (IWPT-2001), pages 42–53, Beijing, China, October 2001. Tsinghua
University Press.

2. Eric de la Clergerie. Automates à Piles et Programmation Dynamique. DyALog :
Une Application à la Programmation en Logique. PhD thesis, Université Paris 7,
Paris, France, 1993.

3. Eric de la Clergerie and Bernard Lang. LPDA: Another look at tabulation in logic
programming. In Van Hentenryck, editor, Proc. of the 11th International Conference
on Logic Programming (ICLP’94), pages 470–486. MIT Press, June 1994.

4. J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

5. Bernard Lang. Towards a uniform formal framework for parsing. In Masaru Tomita,
editor, Current Issues in Parsing Technology, pages 153–171. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1991.

6. Mark-Jan Nederhof. An optimal tabular parsing algorithm. In Proc. of 32nd An-
nual Meeting of the Association for Computational Linguistics, pages 117–124, Las
Cruces, NM, USA, June 1994. ACL.

7. Mark-Jan Nederhof. Reversible pushdown automata and bidirectional parsing. In
J. Dassow, G. Rozenberg, and A. Salomaa, editors, Developments in Language The-
ory II, pages 472–481. World Scientific, Singapore, 1996.

8. Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming, 24(1–2):3–36,
July-August 1995.

9. Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of
Parsing Algorithms. Texts in Theoretical Computer Science — An EATCS Series.
Springer-Verlag, Berlin/Heidelberg/New York, 1997.

