
A Predictive Left-Corner Parser for Tree Adjoining Grammars

Vicente Carrillo and Vı́ctor J. Dı́az
Department of Computer Languages and Systems, University of Seville

Avda. Reina Mercedes s/n, Seville, 41012 Spain
{carrillo,vjdiaz}@lsi.us.es

Miguel A. Alonso
Department of Computation, University of Coruña

Campus de Elviña, La Coruña, 15071 Spain
alonso@dc.fi.udc.es

Abstract

Tree Adjoining Grammar (TAG) is a formalism
that has become very popular for the description
of natural languages. However, the parsers for
TAG that have been defined on the basis of the
Earley’s algorithm entail important computational
costs. In this article, we propose to extend the left
corner relation from Context Free Grammar (CFG)
to TAG in order to define an efficient left corner
parser for TAG that improves the performance of
the Earley-like parsers guaranteeing the valid prefix
property, due to a remarkable reduction in the
number of predictions operations with respect to
Earley-like parsing algorithms.

Keywords:parsing, left corner, tree adjoining
grammar

1 Introduction

Tree Adjoining Grammar (TAG) [6] is a naturally
lexicalized formalism adequate to describe the syntax
of natural languages. As a counterpart, the parsing
process for this mildly context-sensitive formalism en-
tails larger computational costs than the same proc-
cess applied to Context Free Grammar (CFG): the

worst case time complexity of TAG parsers is O(n6),
in contrast with O(n3) complexity of CFG parsers.
In recent years, there have been described in the lit-
erature several approaches that try to improve the
perfomance of TAG parsers, most of them based on
restrictions in the formalism [10] or compilation of
elementary trees into finite-state automata [5].

Earley’s [4] and Left corner (LC) [9] parsers are
probably the most popular parsing algorithms for
CFG. Both of them proceeds through the sentence
from left to right, but they differs in the way top-
down predictions are used to guide the bottom-up
recognition. A LC parser reduces the number of pre-
dictions applied by an Earley’s parser by using a left
corner relation between grammar symbols. Several
parsers for TAG have been defined on the basis of the
Earley’s algorithm [7, 6, 1, 8] but, to the best of our
knowledge, only one parser [3] that does not guaran-
tee the valid prefix property (VPP) has been defined
to improve the practical performance of Earley-like
parsers for TAG by using a left corner relation. In
this work, we present a left corner parser for TAGs
that satisfies the VPP and remains the time complex-
ity of the algorithm presented in [3].

The article may be outlined as follows. In section 2
we recall the definition of TAG and we introduce the
notation used in the rest of the article. In section 3 an
Earley-like parsing algorithm for TAG is described.

1

This algorithm is used as a base to define a predictive
left-corner parser in section 4. Section 5 presents final
conclusions.

2 Notation

2.1 Tree Adjoining Grammars

A TAG is a five-tuple (VN , VT , S, I,A), where VN is
a set of nonterminal symbols, VT is a set of terminal
symbols, S ∈ VN is the axiom, I is a finite set of
finite initial trees and A is a finite set of finite aux-
iliary trees. The set I ∪ A is referred to as the set
of elementary trees. Internal nodes in an elementary
tree are labeled by nonterminal symbols. We refer
to the root of an elementary tree γ as Rγ . In each
elementary tree the nodes on the frontier are labeled
by terminal symbols or the empty string (ε), except
that exactly one node in each auxiliary tree which is
marked as the foot and whose label is the same as
the root. We refer to the foot of an auxiliary tree β
as Fβ . The path from the root to the foot is called
the spine. We use label(Mγ) to denote the label of
node Mγ .

The adjunction operation inserts an auxiliary tree
β into another tree γ on a node Mγ that has the
same label as Rβ . As a result, Mγ is replaced by β
and Fβ is replaced by the subtree rooted at Mγ . We
use β ∈ adj(Mγ) to denote that a tree β ∈ A may
be adjoined on node Mγ , i.e. Mγ is an adjunction
node. If adjunction is not mandatory on Mγ then
nil ∈ adj(Mγ), where nil is a dummy symbol.

In order to represent partial parse trees, we define
a production Nγ → Nγ

1 ...Nγ
g for every node Nγ and

its ordered g children Nγ
1 ...Nγ

g in an elementary tree.
We refer to the set of productions related to an ele-
mentary tree γ as P(γ).

For technical reasons, we consider additional pro-
ductions � → Rα, � → Rβ and Fβ → ⊥ for every
initial tree α and auxiliary tree β. To preserve the
generative capability of the grammar, the nodes �
and ⊥ can not be adjunction nodes.

Given two pairs (p, q) and (p′, q′) of integers,
(p, q) ≤ (p′, q′) is satisfied if p ≤ p′ and q ≤ q′. In
order to simplify the description of parser, we intro-

duce the operation ∪ that is defined by: given two
integers p and q, we define p∪ q as p if q is undefined
and as q if p is undefined, being undefined in other
case.

2.2 Parsing schemata

Parsing algorithms can be defined as deduction sys-
tems [11],[12] where formulas, called items, are sets
of complete or incomplete constituents. Parsing
schemata were introduced in [12] as a framework for
high-level description of parsing algorithms. A pars-
ing schema abstracts from implementation details of
an algorithm, such as data and control structures.

Formally, a parsing system for a grammar G and
string a1 . . . an is a triple 〈I,H,D〉, with I a set of
items which represent intermediate parse results, H
an initial set of items called hypothesis that encodes
the sentence to be parsed, and D a set of deduction
steps that allow new items to be derived from al-
ready known items. Deduction steps are of the form
η1,...,ηk

ξ cond, meaning that if all antecedents ηi of a de-
duction step are present and the conditions cond are
satisfied, then the consequent ξ should be generated
by the parser. A set F ⊆ I of final items represent
the recognition of a sentence. A parsing schema is
a parsing system parameterized by a grammar and a
sentence.

The set of items in a parsing system IPAlg cor-
responding to the parsing schema Alg describing a
given parsing algorithm Alg is denoted IAlg, the set
of hypotheses HAlg, the set of final items FAlg and
the set of deduction steps is denoted DAlg.

The parsing schemata framework allows us to es-
tablish relations between two parsers in a formal way.
A parsing schema can be generalized from another
one by means of item refinement, breaking single
items into multiple items, step refinement, decom-
posing a single deduction step in a sequence of steps,
and by considering a larger class of grammars (exten-
sion).

In order to decrease the number of items and de-
duction steps in a parsing schema, we can apply the
following kinds of filtering: static filtering, in which
redundant parts are simply discarded, dynamic fil-
tering, using context information to determine the

2

validity of items, and step contraction, in which a se-
quence of deduction steps is replaced by a single one.
In particular, filters are very interesting relations be-
cause they can be used to improve the performance
of parsers in practical cases. An example of filter
is the relation between Earley and Left Corner (LC)
parsers for CFG [12].

3 An Earley-like parser for
TAG

In this section we describe an Earley-like parsing al-
gorithm for TAG preserving the valid prefix property.
It is essentialy the same algorithm defined in [8, 1].
Parsers satisfying the VPP guarantee that, as they
read the input string from left to right, the substrings
read so far are valid prefixes of the language defined
by the grammar. More formally, a parser satisfies the
VPP if for any substring a1 . . . ak read from the input
string a1 . . . akak+1 . . . an guarantees that there is a
string of tokens b1 . . . bm, where bi need not be part of
the input string, such that a1 . . . akb1 . . . bm is a valid
string of the language.

To obtain an Earley-like parsing algorithm for TAG
preserving the VPP we need to define items of the
form

I1
Earley =

{
[Nγ → δ • ν, h, i, j | p, q]

}

such that Nγ → δ • ν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ h ≤
i ≤ j, (p, q) ≤ (i, j). It must be satisfied that Rγ

spans the part ah+1 . . . aiδνυ of the input string, with
δ spanning ai . . . ap Fγ aq+1 . . . aj

∗⇒ ai . . . aj if and
only if (p, q) �= (−,−), and spanning ai . . . aj if and
only if (p, q) = (−,−). We also need to define a new
kind of intermediate pseudo-items

I2
Earley =

{
[Nγ → δ•, i, j | p, q]

}

such that Nγ → δ• ∈ P(γ), γ ∈ I ∪ A, 0 ≤
i ≤ j, (p, q) ≤ (i, j). It must be satisfied that δ

spans ai . . . ap Fγ aq+1 . . . aj
∗⇒ ai . . . aj if and only

if (p, q) �= (−,−), spanning ai . . . aj if and only if
(p, q) = (−,−) .

The hypotheses defined for this parsing schema are
the standard ones and therefore they will be omitted

in the next parsing schemata described in this article:

H =
{

[a, i − 1, i] | a = ai, 1 ≤ i ≤ n
}

The following is a list of the different types of de-
duction steps used in this parsing strategy:

DInit
Earley =

[� → •Rα, 0, 0, 0 | −,−]

with α ∈ I.

DScan
Earley =

[Nγ → δ • Mγν, h, i, j − 1 | p, q],
[a, j − 1, j]

[Nγ → δMγ • ν, h, i, j | p, q]

with label(Mγ) = a.

Dε
Earley =

[Nγ → δ • Mγν, h, i, j | p, q],
[Nγ → δMγ • ν, h, i, j | p, q]

with label(Mγ) = ε.

DPred
Earley =

[Nγ → δ • Mγν, h, i, j | p, q]
[Mγ → •υ, h, j, j | −,−]

with nil ∈ adj(Mγ).

DComp
Earley =

[Nγ → δ • Mγν, h, i, k | p, q],
[Mγ → υ•, h, k, j | p′, q′]

[Nγ → δMγ • ν, h, i, j | p ∪ p′, q ∪ q′]

with nil ∈ adj(Mγ).

DAdjPred
Earley =

[Nγ → δ • Mγν, h, i, j | p, q]
[� → •Rβ , j, j, j | −,−]

with β ∈ adj(Mγ).

DFootPred
Earley =

[Fβ → •⊥, j, k, k | −,−],
[Nγ → δ • Mγν, h, i, j | p, q]

[Mγ → •δ, h, k, k | −,−]

with β ∈ adj(Mγ).

DFootComp
Earley =

[Mγ → δ•, h, k, l | p, q],
[Fβ → •⊥, j, k, k | −,−],
[Nγ → δ • Mγν, h, i, j | p′, q′]

[Fβ → ⊥•, j, k, l | k, l]

3

with β ∈ adj(Mγ), p∪p′ is defined, q∪q′ is defined.

DAdjComp0

Earley =

[� → Rβ•, j, j,m | k, l],
[Mγ → δ•, h, k, l | p, q],
[[Mγ → δ•, j,m | p, q]]

with β ∈ adj(Mγ).

DAdjComp1

Earley =

[[Mγ → δ•, j,m | p, q]],
[Mγ → δ•, h, k, l | p, q],
[Nγ → δ • Mγν, h, i, j | p′, q′]

[Nγ → δMγ • ν, h, i,m | p ∪ p′, q ∪ q′]

with β ∈ adj(Mγ).
Parsing begins by creating the item corresponding

to a production having the root of an initial tree as
left-hand side and the dot in the leftmost position of
the right-hand side. Then, a set of deductive steps
DPred

Earley and DComp
Earley traverse each elementary tree. A

step in DAdjPred
Earley predicts the adjunction of an aux-

iliary tree β in a node of an elementary tree γ and
starts the traversal of β. Once the foot of β has been
reached, the traversal of β is momentary suspended
by a step in DFootPred

Earley , which re-takes the subtree of
γ which must be attached to the foot of β. When the
traversal of a predicted subtree has finished, a step
in DFootComp

Earley re-takes the traversal of β continuing
at the foot node. When the traversal of β is com-
pletely finished, the consecutive application of a step
in DAdjComp0

Earley and a step in DAdjComp1

Earley check if the
subtree attached to the foot of β corresponds with
the adjunction node. The input string has been rec-
ognized if a final item [� → Rα•, 0, 0, n | −,−], with
α ∈ I, is generated. The worst-case time complexity
of the algorithm is O(n6) [8].

4 A predictive left-corner
parser for TAG

In this section we present a parser that uses the left
corner relation to filter the predictions on the pre-
dictive Earley-like parser for TAGs described in the
previous section. The time complexity of the algo-
rithm with respect to the length n of the input string
remains O(n6), but the practical performance is im-
proved with respect to the Earley-like algorithm, due

to the reduction in the size of the set of deduced
items.

In a CFG, the left corner of a non-terminal sym-
bol A is the terminal or non-terminal symbol X if
and only if there exists a production A → Xν in the
grammar, where ν is a sequence of symbols. In the
case of A → ε, we consider ε as the left corner of
A. The following definition extends the left corner
relation to the case of TAG.

Definition 1 Left corner relation on the elementary
trees of a TAG
The left corner of a node Oγ is her leftmost daugh-
ter P γ if and only if adj(P γ) = {nil}. The relation
>� on (VN ∪ �) × (VN ∪ VT ∪ {ε,⊥}) is defined by
Oγ>�P

γ if there is a production Oγ → P γν ∈ P(γ)
and adj(P γ) = {nil}. The transitive and reflexive
closure of >� is denoted >∗

� .

It is worth noting that the left corner relation for
TAG always starts on a node labeled with a nonter-
minal symbol and ends on a adjunction node, a node
labeled with a terminal symbol or a node labeled with
ε. We use Mγ>� � to denote that Mγ is a adjunc-
tion node.

In the following, we define a (instantiated item-
based) parsing system IPpLC corresponding to the
predictive left corner parsing algorithm for TAG, for
an arbitrary tree adjoining grammar G and an input
string a1 . . . an with n ≥ 0:

IPpLC =< IpLC,HpLC(a1 . . . an),DpLC >

4.1 Items

The set of items IpLC considered in this parsing al-
gorithm is defined as

IpLC = Ip
pLC ∪ I lc1

pLC ∪ I lc2

pLC ∪ I lc3

pLC

Predictive steps in the Earley-like parser are replaced
by goals that the pLC parser tries to satisfy in a
bottom-up manner. The bottom-up phase of the
recognition process is guided towards the correpond-
ing goal by the left corner relation. Therefore, we
consider two kinds of items: predictive and left cor-
ner items.

4

Predictive items in the set Ip
pLC are used to start

the subtree prediction of a node or the adjunction
prediction at an adjunction node. These items are of
the form [Mγ , h, j] and they will be generated if pre-
ceding items indicate that a constituent Mγ should
be looked for, starting at position j. To preserve the
valid prefix property, we include the position h where
the tree γ starts at. Thus,

Ip
pLC = {[Mγ , h, j]}

such that label(Mγ) ∈ VN , γ ∈ I ∪A and 0 ≤ h ≤ j.
Left corner (lc) items of the form [Cγ ;Mγ → δ •

ν, h, i, j | p, q] will be generated if [Cγ , h, j] is set as a
goal, Cγ>∗

�M
γ and δ spans ai+1 . . . ap . . . aq . . . aj if

δ dominates the foot of γ and the string spanned by
the foot is ap+1 . . . aq or δ spans ai+1 . . . aj in other
case. The idea is that each lc item incorporates a
prefix for a given goal. A graphical representation of
this kind of items is shown in figure 1. Thus,

I lc1

pLC = {[Cγ ;Mγ → δ • ν, h, i, j | p, q]}

such that Mγ → δν ∈ P(γ), γ ∈ I ∪ A, Cγ>∗
�M

γ ,
δ �= ε, 0 ≤ h ≤ i ≤ j and ((p, q) ≤ (i, j) or
(p, q) = (−,−)). We can notice that the pLC parser
filters items with the dot preceding the leftmost sym-
bol of the productions. However, this filtering is not
possible when the leftmost symbol P γ of a production
is:

1. an adjunction node, because the insertion of an
auxiliary tree ends the left corner relation;

2. a node labeled with ⊥, because the left corner
relation is limited to an elementary tree.

To deal with these two special cases, we define the
following kind of left corner items:

I lc2

pLC = {[Cγ ;Mγ → •P γν, h, j, j | −,−]}

such that Mγ → P γν ∈ P(γ), γ ∈ I ∪ A, Cγ>∗
�M

γ ,
0 ≤ h ≤ j and (P γ>� � or label(P γ) = ⊥) .

We also need to define a new kind of intermediate
pseudo-items:

I lc3

pLC = {[Nγ ;Nγ → δ•, i, j | p, q]}

Cγ

M γ

Rγ

Fγ

h

i p q j

lef
t c

or
ne

r r
ela

tio
n

δ ν

Figure 1: Left corner items

such that Nγ → δ• ∈ P(γ), γ ∈ I ∪ A, 0 ≤
i ≤ j, (p, q) ≤ (i, j). It must be satisfied that δ

spans ai . . . ap Fγ aq+1 . . . aj
∗⇒ ai . . . aj if and only

if (p, q) �= (−,−), spanning ai . . . aj if and only if
(p, q) = (−,−).

The set of final items is defined as follows:

FpLC = {[�;� → Rα•, 0, 0, n | −,−] | α ∈ I}

4.2 Deduction steps

With respect to the set of deduction steps DpLC, we
define subsets for initialize, scan and complete similar
to the Earley-like parser for TAGs. The left corner re-
lation will be applied for the four cases of prediction:
initial, subtree, foot and adjunction. The left corner
steps come in three varieties, for terminal, empty and
nonterminal left corners. The latter is needed when
the left corner is an adjunction or bottom node, due
to the auxiliary tree or the subtree excised by an ad-
junction must be recognized. The set DpLC of deduc-
tion steps is defined as follows:

DpLC = DLIt
pLC ∪ DLIε

pLC ∪ DLIpre
pLC ∪ DScan

pLC ∪ Dε
pLC∪

DLCt
pLC ∪ DLCε

pLC ∪ DLCpre
pLC ∪ DLCn

pLC ∪ DPre
pLC∪

DComp
pLC ∪ DLAt

pLC ∪ DLAε

pLC ∪ DLApre
pLC ∪ DAdjComp0

pLC ∪

5

DAdjComp1

pLC ∪ DLFt
pLC ∪ DLFε

pLC ∪ DLFpre
pLC ∪ DFootComp

pLC

4.2.1 Initialization steps

The recognition starts by predicting every initial tree
α ∈ I. As �>∗

�O
α and Oα → Pαν ∈ P(α), we

can apply a left corner filter and obtain the three
following steps:

DLIt
pLC =

[a, 0, 1]
[�;Oα → Pα • ν, 0, 0, 1 | −,−]

with label(Pα) = a.

DLIε

pLC =
[�;Oα → Pα • ν, 0, 0, 0 | −,−]

with label(Pα) = ε.

DLIpre
pLC =

[�;Oα → •Pαν, 0, 0, 0 | −,−]

with Pα>� �.
A step in DLIt

pLC is used when the left-most daughter
Pα is labeled by a terminal symbol. A step in DLIε

pLC is
used when Pα is labeled by the empty string . If Pα

is an adjunction node then a step in DLIpre
pLC is applied.

4.2.2 Scanning

The scanning steps are analogous to the scanning
steps of the Earley-like parser:

DScan
pLC =

[Cγ ;Nγ → P γδ • Mγν, h, i, j | p, q]
[a, j, j + 1]

[Cγ ;Nγ → P γδMγ • ν, h, i, j + 1 | p, q]

with label(Mγ) = a.

Dε
pLC =

[Cγ ;Nγ → P γδ • Mγν, h, i, j | p, q]
[Cγ ;Nγ → P γδMγ • ν, h, i, j | p, q]

with label(Mγ) = ε.
A step in DScan

pLC recognizes the presence of a terminal
symbol in the input string. A step in Dε

pLC encodes
the fact that one can skip over a node labeled with ε
without having to match anything.

4.2.3 Left corner prediction and completion

When the recognition process reaches a node Mγ that
dominates a given node Oγ by means of a left corner
relation, i.e. Mγ>∗

�O
γ , and adjunction is not manda-

tory at Mγ , we can apply the left corner filter defined
by the following deduction steps:

DLCt
pLC =

[Mγ , h, j]
[a, j, j + 1]

[Mγ ;Oγ → P γ • ν, h, j, j + 1 | −,−]

with nil ∈ adj(Mγ), label(P γ) = a.

DLCε

pLC =
[Mγ , h, j]

[Mγ ;Oγ → P γ • ν, h, j, j | −,−]

with nil ∈ adj(Mγ), label(P γ) = ε.

DLCpre
pLC =

[Mγ , h, j]
[Mγ ;Oγ → •P γν, h, j, j | −,−]

with nil ∈ adj(Mγ), label(P γ) = ⊥.
Steps in DLCn

pLC perform the bottom-up recognition
trough the nodes in a left corner relation. It is worth
noting that the prefix of left corner items establishes
the end of this bottom-up recognition, since the ap-
plication of a sequence of DLCn

pLC steps stops when the
prefix is reached:

DLCn
pLC =

[Mγ ;Oγ → ν•, h, j, k | p, q]
[Mγ ;Qγ → Oγ • ω, h, j, k | p, q]

with Mγ �= Oγ .

4.2.4 Prediction

The prediction of nodes is performed by steps in
DPre

pLC:

DPre
pLC =

[Cγ ;Nγ → δ • Mγν, h, i, j | p, q]
[Mγ , h, j]

with label(Mγ) ∈ VN .

4.2.5 Normal completion

Steps in the set DComp
pLC are analogous to the completor

steps of the Earley-like parser. These steps complete

6

the recognition of a subtree dominated by a node that
has not mandatory adjunction:

DComp
pLC =

[Cγ ;Nγ → δ • Mγν, h, i, j | p, q]
[Mγ ;Mγ → ω•, h, j, k | p′, q′]

[Cγ ;Nγ → δMγ • ν, h, i, k | p ∪ p′, q ∪ q′]

with nil ∈ adj(Mγ).

4.2.6 Adjunction prediction

When an adjunction node Mγ is reached, we must
trigger the recognition of every auxiliary tree β that
may be adjoined at Mγ . As �>∗

�O
β and Oβ →

P βν ∈ P(β), we can apply a left corner filter, ob-
taing the following three sets of deduction steps:

DLAt
pLC =

[Mγ , h, j]
[a, j, j + 1]

[�;Oβ → P β • ν, j, j, j + 1 | −,−]

with β ∈ adj(Mγ), label(P β) = a.

DLAε

pLC =
[Mγ , h, j]

[�;Oβ → P β • ν, j, j, j | −,−]

with β ∈ adj(Mγ), label(P β) = ε.

DLApre
pLC =

[Mγ , h, j]
[�;Oβ → •P βν, j, j, j | −,−]

with β ∈ adj(Mγ), (P β>� � or label(P β) = ⊥).

4.2.7 Adjunction completion

Once the recognition of an auxiliary tree β is ex-
hausted, the parser completes the adjoined node Mγ

which it was adjoined on:

DAdjComp0

pLC =

[�;� → Rβ•, j, j,m | k, l]
[Mγ ;Mγ → ω•, h, k, l | p, q]
[Mγ ;Mγ → ω•, j,m | p, q]

with β ∈ adj(Mγ).

DAdjComp1

pLC =

[Mγ ;Mγ → ω•, j,m | p, q]
[Mγ ;Mγ → ω•, h, k, l | p, q]
[Cγ ;Nγ → δ • Mγν, h, i, j | p′, q′]

[Cγ ;Nγ → δMγ • ν, h, i,m | p ∪ p′, q ∪ q′]

with β ∈ adj(Mγ).

4.2.8 Foot prediction

When the recognition reaches an adjunction node Mγ

and an auxiliary tree β, such that β ∈ adj(Mγ), is
recognized up to the node ⊥, then the recognition of
the excised subtree must be started. As in previous
cases, we can apply a left corner filter to this predic-
tion, defining the following set of deduction steps:

DLFt
pLC =

[Mγ , h, j]
[Eβ ;Fβ → •⊥, j, k, k | −,−]
[a, k, k + 1]

[Mγ ;Oγ → P γ • ν, h, k, k + 1 | −,−]

with label(P γ) = a.

DLFε

pLC =

[Mγ , h, j]
[Eβ ;Fβ → •⊥, j, k, k | −,−]

[Mγ ;Oγ → P γ • ν, h, k, k | −,−]

with label(P γ) = ε.

DLFpre
pLC =

[Mγ , h, j]
[Eβ ;Fβ → •⊥, j, k, k | −,−]

[Mγ ;Oγ → •P γν, h, k, k | −,−]

with P γ>� � or label(P γ) = ⊥.

4.2.9 Foot completion

A set in DFootComp
pLC starts the recognition of the right

context of an auxiliary tree β when the excised sub-
tree rooted at Mγ is exhausted:

DFootComp
pLC =

[Mγ , h, j]
[Eβ ;Fβ → •⊥, j, k, k | −,−]
[Mγ ;Mγ → ν•, h, k, l | p, q]
[Eβ ;Fβ → ⊥•, j, k, l | k, l]

with β ∈ adj(Mγ).
The time complexity of the algorithm with respect

to the length n of the input string is O(n6) for this
parser, due to the adjunction completion steps that
present the maximum number of relevant indices.
The correction of the algorithm is proved in [2].

7

5 Conclusion

We have defined a new parser for TAG that is an
extension of the Left Corner parser for Context Free
Grammars. The new parser guarantees the VPP and
it can be view as a filter on an Earley-like parser for
TAGs where the number of predictions is reduced due
to the generalized left corner relation that we have
established on the nodes of elementary trees. The
worst-case complexity with respect to space and time
is the standard one for TAG parsing, but preliminary
experiments have shown a better performance than
classical Earley-like parsers for TAG.

Acknowledgements

The work described in this article has been sup-
ported in part by Plan Nacional de Investigación
Cient́ıfica, Desarrollo e Innovación Tecnológica
(TIC2000-0370-C02-01), Ministerio de Ciencia y Tec-
noloǵıa (HP2001-0044, FIT-150500-2002-416) and
Xunta de Galicia (PGIDT01PXI10506PN).

References

[1] M.A. Alonso, D. Cabrero, E. de la Clergerie, and
M. Vilares. Tabular algorithms for TAG pars-
ing. In Proc. of Ninth Conference of the Eu-
ropean Chapter of the Association for Compu-
tational Linguistics (EACL’99), pages 150–157,
Bergen, Norway, 1999.

[2] V. Carrillo. Corrección de analizadores basados
en left-corner para tags. Technical Report LSI-
2002-03, Department of Computer Languages
and Systems, University of Seville, 2002.

[3] V. J. Dı́az, V. Carrillo, and M. A.Alonso. A
left corner parser for tree adjoining grammars.
In Proceedings of the Sixth International Work-
shop on Tree Adjoining Grammars and Related
Frameworks (TAG+6), pages 90–95, Venice,
Italy, May 2002.

[4] J. Earley. An efficient context-free parsing algo-
rithm. PhD thesis, Carnegie-Mellon University,
Pittsburg, PA, 1968.

[5] R. Evans and D. Weir. A structure-sharing
parser for lexicalized grammars. In Proc. of 36th
Annual Meeting of the Association for Com-
putational Linguistics and 17th International
Conference on Computational Linguistics (ACL-
COLING’98), volume I, pages 372–378, Mon-
treal, Canada, 1998.

[6] A.K. Joshi and Y. Schabes. Handbook of Formal
Languages, volume 3, chapter Tree-adjoining
grammars, pages 69–123. G. Rozenberg and A.
Salomaa, 1997.

[7] B. Lang. The systematic construction of earley
parsers: Application to the production of o(n6)
earley parsers for tree adjoining grammars. In
Proc. of the 1st International Workshop on Tree
Adjoining Grammars, Montreal, Canada, 1990.

[8] M.-J. Nederhof. The computational complexity
of the correct-prefix property for TAGs. Com-
putational Linguistics, 25(3):345–360, 1999.

[9] D.J. Rosenkrantz and P.M. Lewis. Determinis-
tic left corner parsing. In Proc. of 11th Annual
Symposium on Switching and Automata Theory,
pages 139–152, 1970.

[10] Y. Schabes and R.C. Waters. Tree insertion
grammar: A cubic-time parsable formalism that
lexicalizes context-free grammar without chang-
ing the trees produced. Computational Linguis-
tics, 21(4):479–513, 1995.

[11] S.M. Shieber, Y. Schabes, and F.C.N. Pereira.
Principles and implementation of deductive
parsing. Journal of Logic Programming, 24(1–
2):3–36, 1995.

[12] K. Sikkel. Parsing schemata — A framework
for specification and analysis of parsing algo-
rithms. Springer-Verlag, Berlin/Heidelberg/New
York, 1997.

8

