Comparing tabular parsers for
Tree Adjoining Grammars

Victor J. Diaz and Miguel A. Alonso

Abstract
Most of tabular parsing algorithms for tree adjoining grammars has been
demonstrate to attain a theoretical worst-case time complexity of O(n®),
where n is the length of the input string. In this work we study the experi-
mental complexity of a variety of tabular parsers for tree adjoining grammars
for the case of formal and natural language grammars.

1 Introduction

Tree Adjoining Grammars (TAGs) [4] are tree rewriting systems that can be con-
sidered an extension of context-free grammars (CFGs) where the basic structures
are trees instead of productions and the main composition operation is adjoining
instead of substitution. Adjoining is a more powerful operation than substitution,
as a consequence:

1. The class of languages recognized by tree adjoining grammars is larger than
the class recognized by context-free grammars.

2. The time complexity of parsers increases from O(n?) to O(n®) and the space
complexity raises from O(n?) to O(n*), where n is the length of the input
string, due to the management of the adjoining operation.

Most of parsing algorithms proposed for tree adjoining grammars are derived from
tabular parsing algorithms previously defined for context-free grammars. Given this
relationship, we could suppose that the general guidelines in the behavior of CFGs
parsers are preserved in TAGs parsers. We must reconsider this assertion since the
special characteristics of tree adjoining grammars introduce new facets not present
in context-free parsers. In the case of lexicalized tree adjoining grammars, this fact is
more evident because every tree must include a frontier node labeled with a terminal
symbol. In this way, we consider of interest to study the practical behavior of the
most popular parsing algorithms for TAGs.

Victor J. Diaz Madrigal, Departamento de Lenguajes y Sistemas Informéticos, Universidad
de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain), http://www.lsi.us.es/“vjdiaz/,
vjdiaz@lsi.us.es

Miguel A. Alonso Pardo, Departamento de Computacién, Universidad de La Coruiia,
Campus de Elvifia s/n, 15071 La Corufa (Spain), http://www.dc.fi.udc.es/~alonso/,
alonso@dc.fi.udc.es

adjunction node Ny

7N

auxiliary @®_ rovt node

7 R

@) @)

@ foot node
Figure 1: Adjoining operation

2 Tree adjoining grammars

A tree adjoining grammar is a 5-tuple G = (Viy, Vi, S, I, A), where Vy is a finite
set of non-terminal symbols, V- a finite set of terminal symbols, S the axiom of the
grammar, I a finite set of initial trees and A a finite set of auziliary trees. I U A
is the set of elementary trees. Internal nodes are labeled by non-terminals and leaf
nodes by terminals or the empty word ¢, except for just one leaf per auxiliary tree
(the foot) which is labeled by the same non-terminal used as the label of its root
node. The path in an auxiliary tree from the root node to the foot node is called
the spine of the tree.

New trees are derived by adjoining: let v be a tree containing a node N7 labeled
by A € Vy and let [be an auxiliary tree whose root and foot nodes are also labeled
by A. Then, as is depicted in figure 1, the adjoining of # at the adjunction node
N7 is obtained by excising the subtree of v with root N7, attaching 4 to N7 and
attaching the excised subtree to the foot of 5.

In the case of lexicalized tree adjoining grammars, where each elementary tree is
anchored by a lexical item, the operation of substitution is also considered. In this
case, non-terminals can also label leaf nodes (called substitution nodes) of elemen-
tary trees. An initial tree can be substituted at a substitution node if its root is
labeled by the same non-terminal that labels the substitution node.

3 Parsing algorithms for tree adjoining grammars

All parsers discussed in this paper have been tested using a common framework, a
deductive parsing machine [9], implemented in Prolog and running on a Pentium II
computer. The deductive parsing machine is a canonical implementation of chart-
based parsers where parsers are defined as item-based deduction systems. Briefly, the
definition of item-based deduction systems consists of a set of items (formulas) and
a set of deduction steps. As usual, items include information about partial analysis

and deduction steps establish how to combine these items in order to obtain new
items. Given an input and a grammar, the deductive parsing machine compute
every item that can be deduced by the parser. The recognition of the input string
is indicated by the presence of some final items.

The parsers we have considered are the following ones:

e A bottom-up extension of the Earley’s algorithm that traverses trees and re-
cognizes adjoinings in a bottom-up way. We call buE to this algorithm, which
can be seen as an extension of the CYK-like algorithm for TAGs working on
non binary-branching trees [1].

e An extension of Earley’s algorithm that traverses trees in a top-down way and
recognizes adjoinings bottom-up [1]. We call E to this algorithm.

e An extension of the Earley’s algorithm that traverses trees and adjoinings in
a top-down way. We call Sch to this parser, defined by Schabes and Joshi
in [8], which satisfies the valid prefix property [7] at the cost of a theoretical
running time O(n’) and a theoretical space complexity O(nf).

e The extension of the Earley’s algorithm defined by Nederhof [5] that pre-
serves the valid prefix property maintaing the standard theoretical running
time O(n®). However, the theoretical space-complexity increases to O(n®).
We call Ned to this parser.

e The head-driven bidirectional algorithm N defined by Van Noord [10]. The
notion of head is based on the following two constraints: (i) the anchor of
an initial tree must be a head-corner of the root node of the initial tree, and
(ii) the foot node of an auxiliary tree must be head-corner of the root of the
auxiliary tree. Due to these limitations, we have only considered this algorithm
in the case of linguistically motivated tree adjoining grammars.

e The bottom-up bidirectional parser dVH, an extension of de Vreught and
Honig parser for CFGs, defined in [3] and improved in [2].

In order to test the parsers, we are interested on their practical behaviour with
respect to the space and time complexity. Although the size of the grammar affect
this behaviour [6], we will mainly consider the length of the input string. Because of
every parser is defined as a chart-based deductive system, the recognition is shown as
the set of items deduced. Therefore, the isolated study of this set can be considered
a general way to test the parsers.

Given a grammar and an input string, we will compare the number of items
deduced (space-complexity) and the number of adjoining deduction steps applied
(time-complexity). Other deduction steps are not considered because adjoining de-
duction steps are the more expensive ones with respect to computational complexity.

4 Case study 1

For the first case study we have considered a set of 8 formal or artificial grammars.
Each grammar is defined in Table 1 by means of its elementary trees (the full set of

00 ol

S

a T

*SNA b

B5 g

B0
e

T

B2 B3 B4

a

T

Bl

S S

N\

xg™ xg" @
S
NA

S a S

ANAN

b

(o

*S

(@)

/NN

*SNA a

S
*SNA b

Figure 2: Elementary trees

‘ Grammar H Trees Language
G1 at, Bo e” with n >0
G2 aq, B, B e” withn > 0
G3 v, Bo, 1 e" withn >0
G4 ai, Bo, B e" with n > 0
G5 ap, B2, B3 a™b™ with n > 0
G6 a1, Bs a™b™c" withn > 0
G7 ai, fBs | a*becd™ with n > 0
G8 ai, B, Br | wew with w € {a,b}*

Table 1: Languages generated

elementary trees is shown in Figure 2). Table 1 also shows the language generated
by each grammar.

These grammars have been taken as a representative set due to they present
several interesting characteristics:

Simple recursion: grammars presenting this characteristic consist of simple
auxiliary trees where adjoining operations can only be applied on elementary
tree roots and where the foot node is located on the left-most or right-most
position. Grammar G1 is left recursive, grammar G2 is right recursive, while
grammars G3 and G4 are left and right recursive.

Adjoining operations on the spine: theoretical time-complexity O(n®) is
reached when adjoining operation is performed on internal nodes located on
the spine of auxiliary trees. Grammars G5 to G8 include auxiliary trees with
nodes on the spine, apart from the root and foot, where adjoining operations
can be performed. These grammars are well-known examples in the literature
that explore the class of languages recognized by tree adjoining languages:
G1 generates a context-free language while G6, G7 and G8 generate mildly
context-sensitive languages.

Figures 3, 4, 5 and 6 show the experimental results for every grammar. The
main conclusions derived from the study are:

Predictive parsers show better results for G1 and G2 than other parsers. For
the case of non-predictive parsers, dVH and bukE present a similar behavior,
slightly better for the former.

The worst behavior is shown for G3 and G4 grammars, due to the high degree
of ambiguity present in these grammars. Also, it is remarkable that the parser
Sch, although it presents a higher theoretical worst-case time complexity,
shows results similar to those obtained by the parser E.

The parser buE performs badly in the case of grammars G5, G6, G7 and
G8. For these grammars the behavior of dVH is similar to the behavior of
predictive parsers.

A comparison between Ned and E seems to show that preserving the valid
prefix property does not imply to improve the practical results, at least with
respect to space complexity: the behavior of Ned with respect to the number
of items deduced is worse than the behavior of E in the case of grammars G'3
and G4.

In brief, predictive parsers show the best results whereas dVH, and specially
buE, show the worst behavior. This result seems to indicate that top-down filtering
improves the performance of parsers. Moreover, the reduction in the number of items
deduced can be remarkable when the length of the input string grows. However, this
reduction is also a drawback if we are interested in partial parses when the input
does not belong to the language defined by the grammar. It is also interesting to
emphasize that pure bottom-up strategies tend to increase the number of adjoining

G1 Number of Items G2 Number of Items
3000
——buE b
—s—dVH 2000 —+-bug
——E-Sch| | 1000 - VH
& Ned —+—E
0 +orrtrrt= ——Sch
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 ——Ned
Input size Input size
G1 Number of Adjoinings G2 Number of Adjoinings
2000 2000
1500 /‘ ——buE 1500 / —s—buE
1000 _444/-/./. —=—dVH 1000 / —=—dVH
500 A‘%—HH_H —+—E-Sch-Ned|[| 500 M ——E-Sch-Ned
0 Fornrortrnr et ettt 0 oo orernene e e D
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Input size Input size
Figure 3: Experimental results for G1 and G2
G3 Number of Items G4 Number of Items
6000 6000
4000 f —0—buE 4000 ——buE
——dVH —s—dVH
2000 /’/ia/a 2000
e ||-E —E
0 +8ro- T T T T T T T T T T T T ——Sch 0 -+ ——Sch
0123456 7 8 91011121314 |—= Ned 1 23 456 7 8 9101112131415 |- Ned
Input size Input size
G3 Number of Adjoinings G4 Number of Adjoinings
10000 10000
8000 » 8000 1
——buE-dVH ——buE
6000 < 6000 o’
/ —s—E-Sch /,//l/ —s—dVH
4000 4000
2000 ead 5| |[—o—Ned 2000 Pl —s—E-Sch-Ned
01 S sle s —aa NS = =
0123456 7 8 91011121314 123456 7 8 9101112131415
Input size Input size

Figure 4: Experimental results for G3 and G4

G5 Number of Items G6 Number of Items
4000 2500 .
3000 —oue ||| 2000 —— o
_— 1500
2000 ——dvH (| To00 e ——dVH
1000 / 3 R) 500 / —+E
0 +ererer—e—a——a b — ——Sch 0 -+ —&-Sch
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 |—o— Ned 0 3 6 9 12151821 24 27 30 33 26 39 42 45 | Ned
Input size Input size
G5 Number of Adjoinings G6 Number of Adjoinings
1500 150
——buE
1000 | _qun || 200 ||+ buE
/ £ / —a—dVH
500 - 50 - E-Sch-Ne
—e—Sch-Ne
0 T T T t T T T T T T T T T T T = T = 0 T
02 4 6 81012141618202224 262830 0 3 6 9121518212427303326394245
Input size Input size
Figure 5: Experimental results for G5 and G6
G7 Number of Items G8 Number of items
3000 5000
/ —e—buE 4000 / buE
2000 —a—dVH ||| 3000 A o
Sch 2000 / -a-dVH
1000 —— SCl /
M oop | O ENed | 1000 % e | * F
0 +86=0~ \ﬁ\ﬁ\ﬂ\l\ﬁ\awuwuwu\gwu 0 T e 2T T T —=—Sch
1 5 9 1317 21 2529 33 37 41 45 49 53 57 1 5 9 1317 2125 29 33 37 41 45 49 53 57 | Ned
Input size Input size
G7 Number of Adjoinings G8 Number of Adjoinings
15 500
/./o/’/. 400 y.d ——buE
10 dVH
/ v buE-dvH-E-sch-Np| 320 S -
5 200 / -+ E
100 A
P gt o || °Sch-Ne
0 T T T T T T T T T T T T T 0 T AT T T T T T T T T T T T T

9 17 25 33 41 49 57

Input size

1 5 9 1317212529 33374145495357

Input size

Figure 6: Experimental

results for G7 and G8

operations performed with respect to predictive parsers, at least in the case of simple
recursion.

5 Case Study 2

The second study is based on the English grammar presented in [11]. From this
document we have selected a subset of the grammar consisting of 27 elementary
trees that covers a variety of English constructions. In order to compare only the
syntactic behavior of the parsers we have simulated the features structures by means
of local constraints. Also, we have selected from the document 25 correct and
incorrect sentences grouped with respect to the aspect treated: (1-2) transitives and
ditransitives, (3-5) arguments and adjuncts, (6-9) ergatives and intransitives, (10-
11) sentential complements, (12-13) relative clauses, (14) auxiliary verbs, (15-17)
extraction, (18-21) unbounded dependencies and (22-25) adjectives.

Figure 7 shows the results obtained in the experiment. We have now included
the head-driven parser N since the grammar is linguistically motivated. Also, in
the experiment we have excluded buE and Sch on behalf of dVH and Ned, re-
spectively, in order to simplify the experiment. From the study, we can argue that
the best results are obtained by the parser N despite it performs a higher number
of adjoinings than parsers Ned and E. Bidirectional parsers increase the search
space since the recognition starts over every position in the string. However, in the
context of lexicalized TAGs this kind of strategies implies a reduction of the trees
that are needed during the recognition. The reason is that only those trees that
include an anchor that matches with some input symbol are considered. In the case
of predictive parsers, we need a previous phase in order to filter the trees that are
needed.

The parser dVH deduces more items than other parsers. It is probably due to the
number of items introduced by e-leaves (dVH is a bottom-up bidirectional parser
that is not head-driven). However, the number of adjoining operations performed
by dVH is similar to the number of adjoinings performed by IN.

6 Conclusions

Practical behavior of context-free parsing algorithms has been studied in some ex-
tend. To our knowledge, this has not been the case with respect to parsers for tree
adjoining grammars. This paper is an attempt to introduce some highlights about
this issue. We have tested several tabular parser for TAGs with respect to artificial
and natural language grammars. Since TAGs are mainly used for the recognition
of natural languages, we consider that the study of natural languages grammars is
of special relevance. In this way, we can conclude that head-driven bidirectional
strategies when parsing lexicalized tree adjoining grammars seems to be of interest
because of the reduction of trees considered during the recognition. In order to
achieve this reduction in predictive parsers, a previous filter of these trees must be
applied.

Number of items Number of items

80 100
60 BdVH| ggo EdVh
. EN L N
40 ol 600 u
200 0E 4004 o 0E
O T T T T T T T T T T T T 0 T T T T T T L T T T
1 23456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25
Sentences Sentences
Number of adjoinings Number of adjoinings
8 40
6 Dil\”- 301 I DiIVH
4 N1 201 .
OE Il DE
2 h 101
o Jmm \'Hm“”mmmm ML [ONed) W0 e g i [N
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Sentences Sentences

7

Figure 7: Experimental results for natural language sentences

Acknowledgments

This research was partially supported by the FEDER of EU (Grant 1FD97-0047-
C04-02) and Xunta de Galicia (Grant PGIDT99X110502B).

References

1]

Miguel A. Alonso, David Cabrero, Eric de la Clergerie, and Manuel Vilares.
Tabular algorithms for TAG parsing. En Proc. of FEACL’99, Ninth Conference
of the FEuropean Chapter of the Association for Computational Linguistics, pp.
150-157, Bergen, Norway, 1999. ACL.

Victor J. Diaz, Miguel A. Alonso, and Vicente Carrillo. Bidirectional parsing of
TAG without heads. In Proc. of 5th International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+5), pp. 67-72, Paris, France, May
2000.

Victor J. Diaz, Vicente Carrillo, and Miguel A. Alonso. A bidirectional bottom-
up parser for TAG. In Proc. of the Sizth International Workshop on Parsing
Technologies (IWPT 2000), pages 299-300, Trento, Italy, February 2000.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz
Rozenberg y Arto Salomaa, eds., Handbook of Formal Languages. Vol 3: Beyond

[7]

8]

Words, chapter 2, pp. 69-123. Springer-Verlag, Berlin/Heidelberg/New York,
1997.

Mark-Jan Nederhof. The computational complexity of the correct-prefix prop-
erty for TAGs. Computational Linguistics, 25(3):345-360, 1999.

Anoop Sarkar. Practical experiments in parsing using tree adjoining grammars.
In Proc. of 5th International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+5), pages 193-198, Paris, France, May 2000.

Yves Schabes. The valid prefix property and left to right parsing of tree-
adjoining grammar. In Proc. of II International Workshop on Parsing Tech-
nologies, IWPT’91, pages 21-30, Canciin, Mexico, 1991.

Yves Schabes and Aravind K. Joshi. An Earley-type parsing algorithm for tree
adjoining grammars. In Proc. of 26th Annual Meeting of the Association for
Computational Linguistics, pages 258-269, Buffalo, NY, USA, 1988. ACL.

Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming, 24(1-2):3—
36, 1995.

[10] Gertjan van Noord. Head-corner parsing for TAG. Computational Intelligence,

10(4):525-534, 1994.

[11] The XTAG Research Group (1999). A lexicalized tree adjoining grammar for

English. http://www.cis.upenn.edu/~xtag. Technical Report IRCS 95-03, IRCS,
Institute for Research in Cognitive Science, University of Pennsylvania, Philadel-
phia PA, USA

