Automatic Generation of Natural
Language Parsers from Declarative
Specification$

Carlos Gomez-Rodriguéz Jesus Vilare and Miguel A. Alonsd

aEscuela Superior de Ingenieria Informatica, Universidaéevigo (Spain)
e-mail: cgomezr@uvigo.es
b Departamento de Computacion, Universidade da Corufia (§pai
e-mail: {jvilares, alonso}@udc.es

1. Introduction

Parsing schemata, described in [2], provide a formal, snapld uniform way to de-
scribe, analyze and compare different parsing algoritfis.notion of a parsing schema
comes from considering parsing as a deduction process vganhrates intermediate
results calledtems An initial set of items is directly obtained from the inp#rgence,
and the parsing process consists of the application ofénfar rules which produce new
items from existing ones. Each item contains a piece of mé&dion about the sentence’s
structure, and a successful parsing process will produeasittondinal itemcontaining

a full parse tree for the sentence or guaranteeing its existéAlmost all known parsing
algorithms may be described by a parsing schema.

Parsing schemata are located at a higher abstraction kereblgorithms. A schema
specifies the steps that must be executed and the intermedgtlts that must be ob-
tained in order to parse a given string, but it makes no cldiouathe order in which to
execute the steps or the data structures to use for stoemgshilts.

Their abstraction of low-level details makes parsing sctamery useful, allowing
us to define and study parsers in a simple and straightforwayd However, when we
want to actually test a parser by running it on a computer, @edrto implement it in a
programming language, so we have to abandon the high leadsifaction and worry
about implementation details that were irrelevant at tihesa level.

The technique presented in this paper automates this tgs&ornpiling parsing
schemata to Java language implementations of their camelépg parsers. The input
to the compiler is a simple and declarative representatianparsing schema, and the
output is an efficient executable implementation of its elsded parsing algorithm.

Lpartially supported by Ministerio de Educacién y Ciencia &EDER (Grants TIN2004-07246-C03-01,
TIN2004-07246-C03-02), Xunta de Galicia (Grants PGIDIPBSC30501PN, PGIDITO5PXIC10501PN and
PGIDITO5SINO44E), and Programa de becas FPU (Ministeriodie&cion y Ciencia).



2. From declarative descriptionsto program code

These are the fundamental ideas behind our compilatiorepsdor parsing schemata:

e Each deductive step is compiled to a class containing codeatch and search for
antecedent items and produce the corresponding conctusimm the consequent.

e The step classes are coordinated by a deductive parsingesragi the one described
in [1]. This algorithm ensures a sound and complete dedugtiocess, guaranteeing
that all items that can be generated from the initial iteniblvei obtained.

e In order to attain efficiency, an automatic analysis of tHeesea is performed in or-
der to create indexes allowing fast access to items. As dffehethit parsing schema
needs to perform different searches for antecedent itém#dex structures we gen-
erate are schema-specific. In this way, we guarantee caigtanaccess to items so
that the computational complexity of our generated impletatons is never above
the theoretical complexity of the parsers.

e Since parsing schemata have an open notation, for any matieatrobject can po-
tentially appear inside items, the system includes an sitigity mechanism which
can be used to define new kinds of objects to use in schemata.

3. Experimental results

We have used our technique to generate implementationsesf gopular parsing algo-
rithms for context-free grammars: CYK, Earley and Left-@at, and tested all of them
with sentences from three different natural language grararfrom real corpora: Su-
sanne, Alvey and Deltra. Since we are interested in meapgand comparing the per-
formance of the parsers, not the coverage of the grammarbavwegenerated random
input sentences of different lengths for each of these grarsm

The obtained performance measurements show that the ealpiomputational
complexity of the three algorithms is always below theiifegical worst-case complex-
ity of O(n?), wheren denotes the length of the input string. This empirical caexipy is
achieved thanks to the automatic indexing techniques ug#telbcode generator, which
guarantee constant-time access to items. Our results latsw that not all algorithms
are equally suitable for all grammars. CYK is the fastesbatlym for larger grammars
thanks to its lower computational complexity with resp@cgtammar size when com-
pared to Earley and Left-Corner; and the efficiency diffeebetween the latter two
heavily depends on the way the grammar has been designedoiitpalation technique
described in this paper is useful to prototype differentiredtianguage parsers and easily
see which one is better suited for a given application.

References

[1] Stuart M. Shieber, Yves Schabes, and Fernando C. N. PeReiriples and implementation
of deductive parsingJournal of Logic Programming24(1-2):3—-36, July-August 1995.

[2] Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of Barsin
Algorithms Texts in Theoretical Computer Science — An EATCS Series. Springday,
Berlin/Heidelberg/New York, 1997.

IHowever, we must remark that we are not limited to working withtest-free grammars, since parsing
schemata can be used to represent parsers for other grammalisorsnas well.



