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Abstract

Speaker Verification and Utterance Verification are examples of techniques that
can be used for Speaker Authentication purposes.

Speaker Verification consists of accepting or rejecting the claimed identity of a
speaker by processing samples of his/her voice. Usually, these systems are based on
HMM models that try to represent the characteristics of the speakers’ vocal tracts.

Utterance Verification systems make use of a set of speaker-independent speech
models to recognize a certain utterance. If the utterances consist of passwords, this
can be used for identity verification purposes.

Up to now, both techniques have been used separately. This paper is focused on
the problem of how to combine these two sources of information. New architectures
are presented to join an utterance verification system and a speaker verification
system in order to improve the performance in a speaker verification task.

Key words: Speaker authentication, Speaker verification, Utterance
authentication, Gaussian mixture models, Verbal information verification, Neural
networks, Classifier combination.

1 Introduction

Speaker authentication is a process by which an output hypothesis produced
by a statistical classifier is verified to determine wether the input speech be-
longs to the claimed speaker or not [1,2].
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Scanning the literature, two generic approaches for designing a speaker au-
thentication system can be found. One is based on verifying the actual content
of the speech as a means of verifying the speaker identity [3–5]. This can be
considered as the classical “password-based” approach and implies that the
speech content must be kept secret and attached to the speaker. The core of
the system is a speech recognizer tailored for this particular purpose. We call
these systems “Utterance verifiers” (see figure 1).

The other is based on verifying the speaker voice by itself as a way of verifying
the identity. The latter approach is by nature speech content independent
[6,7], although in some practical systems is restricted to be text-dependent
[8,9]. Although these systems are not speech recognizers, they usually share
most of their technology with speech recognizers, i.e., most of them are based
on a HMM (Hidden Markov Model) formulation with a front-end based on a
cepstral analysis. We call these systems “Speaker verifiers”.

As stated before, speaker verification systems make use of the physical charac-
teristics of the speaker’s vocal tract, while utterance verification systems make
use of speech content. A certain degree of uncorrelation may be then assumed,
making it possible to build speaker authentication systems that simultaneously
exploit both levels of information in order to obtain more reliable and robust
recognition.

The approach of combining information from multiple sources has been used in
different application fields of classification like speech recognition [10,11] and
handwriting recognition [12]. In [13] a method is proposed to combine two sets
of speaker-dependent phoneme models for prompted-text speaker recognition.
A new set of models is obtained using a linear combination and the combined
system obtains better results than any of the individual systems. Since this
paper is not focussed on combination, this topic is briefly presented and not
thoroughly explored, although it is clearly stated that combining different
speaker authentication systems is an interesting issue to be investigated in
greater depth.

The motivation for exploring the combination issue is to improve performance.
This can make possible the developing of systems with a level of performance
adequate to be deployed in real-world applications. This is especially impor-
tant if the aim is to transfer the technology from the research laboratories to
the industry.

In [14], Kitter explores the topic of combining two or more classification sys-
tems. A common theoretical framework for classifier combination is developed.
Different assumptions and approximations are made to derive commonly used
classifier combination schemes such as the product rule, sum rule, min rule
and max rule.
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In this article, Kitter’s theoretical framework was used to design our set of
experiments with these combination rules. Moreover, new methods based on a
neural network scheme were added. In [14], each classifier uses its own repre-
sentation of the pattern to classify. This means a serious overhead compared
to individual systems. In this paper, the starting point of the proposed combi-
nation procedures is to assume that the components for the combined system
share most of their technology thus avoiding this overhead. Besides, the theo-
retical scenario is changed from the one proposed by Kitter, since in our case
the classifiers share the representation of the patterns to classify. This implies
that major changes in the theoretical frame must be made.

The organization of the rest of the paper is as follows. In the next section the
characteristics of each individual verification system are described. Section 3 is
devoted to the different combination techniques that can be applied when de-
veloping a common theoretical framework for classifier combination. In section
4, the experimental framework is described: databases, speech parametriza-
tion, and experiments definition. The results of the experiments for the indi-
vidual classifiers and the combined systems are shown in section 5. Finally,
section 6 summarizes the main results of the paper.

2 Architecture of the verifiers

In this paper the problem of how to combine two different speaker authenti-
cation systems is addressed. Before that, the design and development of the
individual classifiers, namely “utterance verifier” and “speaker verifier” is re-
quired. In the case of the speaker verifier, systems based on GMM’s (Gaussian
Mixture Models) were used employing the world-model approximation [15,2].
In the utterance verifier, the passwords set was modeled by concatenation of
a string of sub-word HMM’s [16,3,4].

2.1 Speaker verifier

Since our system is based on passwords, the speaker authentifier as a whole
may be considered as text-dependent. However, and for practical reasons, each
time the password is changed the speaker verification system should not be
affected. The verification process must then be, by nature, text-independent.
GMM’s, which are a special case of continuous HMM’s [7,8] where the number
of states is one were opted for. This type of model has proved to be effective in
modeling the speaker identity in text-independent speaker recognition appli-
cations [7,6,2]. A Hidden Markov Model with several states models, not only
the underlying sounds, but also the temporal sequencing among them. How-
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ever, in text-independent speaker recognition tasks, the sequencing of sounds
found in the training data does not necessarily represent the sound sequences
found in the testing data. So, transition probabilities between states have little
influence.

A Gaussian Mixture Model λ is characterized by

λ = {cm, µ̄m,Um , 1 ≤ m ≤M}

where, for each mixture m:

• cm, is the mixture’s weighting factor.
• µ̄m is the mixture’s mean vector.
• Um is the covariance matrix.

The likelihood of a sequence of observation vectors

O = [ ō1 ō2 . . . ōT ] (1)

given the model λ will be a combination of gaussian components

P (O/λ) =
T∏

t=1

b(ōt)

where the probability of the observation of the vector ōt is given by

b (ōt) =
M∑

m=1

cmN (ōt; µ̄m,Um)

N (ōt; µ̄m,Um) denotes themth multivariate Gaussian probability density func-
tion with mean vector µ̄m and covariance matrix Um and cm is the mixture
weight for the mth mixture component, with the constraint that

∑M
m=1 cm = 1.

M is the total number of mixture components.

In a speaker verification problem, the goal is to determine whether a per-
son is who he or she claims to be. The most straightforward approximation
would be to use the log-likelihood log(P (O/λk)) where λk is the supposed
speaker’s model. This is what it is called unnormalized log-likelihood score.
The speaker is accepted when the unnormalized score Sunnor(O, k) is above a
certain threshold ϕs

k (s for Speaker):

Sunnor(O, k) = log(P (O/λk)) ≥ ϕs
k ⇒ accepted
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One of the most difficult problems for this task is to select the optimal thresh-
old. The threshold must be set up in order to achieve the required balance
between rejecting true claimant utterances (false rejection or type I errors)
and accepting impostors utterances (false acceptance or type II errors). The
unnormalized log-likelihood score usually exhibits a high sensivity to the value
of the threshold. This problem is adressed in section 2.3.

2.2 Utterance verifier

As can be observed in figure 1, the use of utterance verification techniques
requires a set of previously trained speaker independent models that represent
the linguistic units or sub-words that can be present in the utterances. With
such a set, valid passwords can be constructed dynamically by concatenation
of the required units.

Let us suppose there is a sequence of observation vectors as in equation (1)
and we want to verify whether O corresponds to a certain word or phrase Wk

or not.

The word Wk can be modelled as a concatenation of J sub-word units

Wk =
[
w

(k)
1 w

(k)
2 . . . w

(k)
J

]

The sequence of observation vectors O can be thus divided using Viterbi align-
ment in J segments

O = [ O1 O2 . . . OJ ]

where Oj contains ij vectors and is the observation sequence corresponding to

the speech sequence for sub-word w
(k)
j . From now on, the sub-word w

(k)
j will

be substituted for its correspondent HMM model Λj without loss of generality.

The sequence of observation vectors O will be accepted to correspond to a
certain word Wk when the unnormalized score

Sunnor(O,Wk) =
1

J

J∑

j=1

log [P (Oj/Λj)]

is above a certain threshold ϕu
k (u stands for Utterance):

Sunnor(O,Wk) ≥ ϕu
k ⇒ accepted
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As in the speaker verification case, utterance verification using Sunnor(O,Wk)
exhibits high sensivity to threshold estimation.

2.3 Normalization

We can reformulate a generic verification problem from the perspective of a
statistical hypothesis test. Thus, the null hypothesis H0 can be defined as “a
token T belongs to the claimed set’ and the alternative hypothesis H1 as “T
does not belong to the claimed set”. Given a test token T, our objective is to
check the null hypothesis against the alternative hypothesis:

P (H0/T) ≥ P (H1/T) (2)

These two probabilities are usually unknown, but, applying Bayes rule, equa-
tion (2) is equivalent to:

P (T/H0)P (H0)

P (T)
≥ P (T/H1)P (H1)

P (T)

or to evaluate the likelihood ratio

P (T/H0)

P (T/H1)
(3)

and compare it against a decision threshold.

2.3.1 Speaker verifier

In the speaker verification problem, P (T/H0) is calculated as P (O/λk). To
estimate P (T/H1) several different choices can be found. One of them is to
train a HMM model (called anti-model and denoted λk̄) with observation seg-
ments from other speakers but the claimant. There are typically two strategies
to build it up: to use a set of B speaker-dependent models called cohort or
background models [17] or to train a world model shared by all the speakers.

In the log domain, the ratio in eq. (3) becomes

Snor(O, k) = logP (O/λk)− logP (O/λk̄) (4)

This ratio is called the normalized log-likelihood score. This log-likelihood ra-
tio is compared to the threshold ϕs

k to accept or reject the claimed speaker.
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The decision is thus based on a relative score less dependent on non-speaker
utterance variations such as voice quality or speaker’s vocal tract variations.

2.3.2 Utterance verifier

Given the fact that the word Wk can be modeled by concatenation of a string
of sub-word models, the utterance verification can be formulated as a set of
independent hypothesis tests, each of them representing a sub-word verifica-
tion test [18]. The null hypothesis H0 will be “Oj corresponds to the sub-word

w
(k)
j (the model Λj)” and the alternative hypothesis H1 will mean that “Oj

does not correspond to the sub-word w
(k)
j (the model Λj)”.

There are several possibilities to obtain the normalized log-likelihood score. In
this case, this score is calculated as

Snor(O,Wk) =
1

J

J∑

j=1

[
log [P (Oj/Λj)]−max

m6=j
[log [P (Oj/Λm)]]

]
(5)

using, for each segment Oj the probability of the most likely model except Λj.
This score is compared to a threshold ϕu

k.

3 Combination techniques

In [14], Kitter proposes several strategies for combining two or more classi-
fication systems. The theoretical framework is as follows: a decision should
be taken if a pattern Z corresponds to one class m out of M possibilities
(ω1, . . . ωM). If the number of classifiers is R and each one uses its own repre-
sentation of the pattern to classify O(r), the decision to be taken is

assign Z −→ ωm if P
(
ωm/O

(1), . . . ,O(R)
)
≥ ζm (6)

where ζm is a threshold valid for the class ωm.

This theoretical framework is, in our case, slightly modified. Given a test ut-
terance from a presumed speaker k, two normalized scores denoted Snor(O, k)
(see eq. (4)) and Snor(O,Wk) (see eq. (5)) are produced. These scores come
from the combination of probabilities, and, from a statistical point of view,
they are random variables. They can be combined in a bidimensional random
variable:

Sk = [Snor(O, k), Snor(O,Wk)]
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Speaker authentication can be then expressed as a classification problem where
we it has to be decided whether a pattern Z belongs to speaker k or not. In
this case, a binary random variable ωk can be defined:

ωk =





0⇒ impostor

1⇒ customer

In fact, ωk = 0 means that the utterance belongs to a speaker that is not
speaker k.

It has previously been stated that Sk is a bidimensional random variable.
However, each time an authentication attempt takes place, what there actually
is is a realization of this random variable sk. Thus, the authentication process
can be reformulated based on sk:

assign Z −→ ωk if P (ωk = 1/sk) ≥ ϕk (7)

where ϕk is a threshold calculated for speaker k. The criterion expressed in
eq. (6) is simplified: the sets of sequences of parameters

(
O(1), . . . ,O(R)

)
are

transformed into a two-element vector sk.

From now on and for sake of simplicity, the index k will be eliminated. The
super-indexes s for Speaker and u for Utterance will be used. Therefore:

Ss = Snor(O, k)

Su = Snor(O,Wk)

s = [ss, su]

The rule of eq. (7) is optimal from a theoretical point of view. However, it
does not lead to a practical test, since it does not say how to compute the
probability P (ωk = 1/sk). Thus, to implement this rule, several assumptions
must be made in order to derive an approximation function f(·, ·):

f (ss, su) ≈ P (ω = 1/ [ss, su])

f (ss, su) ≥ ϕ⇒ accepted (8)

There are many possible approaches to formulate the approximation function
f(·, ·), and each of them will lead to a different combination rule. Two of these
approaches are explained in the rest of this section, namely:

• f(·, ·) is an algebraic function.
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• f(·, ·) is calculated by a learning scheme like a neural network.

3.1 Kitter rules

The function f(·, ·) can be considered to be algebraic. This case is studied in
depth in [14], where four combination rules are proposed.

Applying Bayes’ rule in eq. (8) and assuming statistical independence between
Ss and Su:

P (ω/ [ss, su]) =
1

P (ω)
P (ω/ss)P (ω/su)

If the speaker and utterance verifiers perform correctly, it can be expected
that the probabilities P (ω = 1/ss) and P (ω = 1/su) will be monotonically
increasing functions on ss and su. It will therefore be possible to find thresholds
to transform the authentication criteria expressed in eq. (7) obtaining:

P (ω = 1/ss)P (ω = 1/su) ≥ ϕ′ ⇒ accepted

ss × su ≥ ϕ′′ ⇒ accepted

ss + su ≥ ϕ′′′ ⇒ accepted

The second and third criteria in this equation correspond to the product and
sum rules proposed by Kitter.

(1) Product rule.

f(ss, su) = ss × su (9)

With this assumption f(·, ·) combines the scores generated by the indi-
vidual classifiers by means of a product operation.

(2) Sum rule.

f(ss, su) = ss + su (10)

Thus, f(·, ·) combines the scores by means of an addition operator.

(3) Minimum rule. Taking into account that

∀ a, b ≤ 1, a× b ≤ min(a, b)

product rule can be approximated by the scores minimum:

f(ss, su) = min(ss, su)
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(4) Maximum rule. Equivalently

∀ (a, b),
1

2
(a+ b) ≤ max(a, b)

and sum rule can be approximated by the maximum:

f(ss, su) = max(ss, su)

3.1.1 Error sensivity

As was previously explained, ss and su come from approximating two like-
lihood ratios of two statistical hypothesis tests. An important point here is
that they have been considered to be correctly computed so far, when, ac-
tually, they are estimates. Then, P̂ (ω/ss) and P̂ (ω/su) will deviate from the
true values P (ω/ss) and P (ω/su) by errors that will extend their influence to
the scores ss and su:

ŝs = ss + χs

ŝu = su + χu

The rest of this section is devoted to consider the effect of these estimation
errors on the proposed rules.

Introducing (11) in the product rule (9)

ŝsŝu = (ss + χs)(su + χu) = sssu
(

1 +
χs

ss

)(
1 +

χu

su

)

A similar analysis of the sum rule (10) gives:

ŝs + ŝu = ss + χs + su + χu = (ss + su)
(

1 +
χs + χu

ss + su

)

Taking into account that χs � ss and χu � su second order terms can be
eliminated. Comparing these equations it can be seen that

[
1 +

χs + χu

ss + su

]
≤
[
1 +

χs

ss
+
χu

su

]

So, the addition rule will be less sensitive than the product rule to errors in
the computation of the estimates.
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3.1.2 Practical implementation

First, ss and su were transformed into scores that contain the distances to
their respective thresholds:

ss′ = ss − ϕs

su′ = su − ϕu

ss′ and su′ will be lesser or greater than zero depending on whether the likeli-
hoods are lesser or greater than their correspondent thresholds, respectively.

Afterwards, and for smoothing purposes, a sigmoid function was applied:

s̃s =
1

1 + e−ass′

s̃u =
1

1 + e−asu′

s̃s and s̃u will tend to 0 or 1 depending on whether they exceed their thresholds
or not. The steepness of the sigmoid is controlled by a. Previous tests led us
to use a value of a = 5 for this parameter.

These newly calculated scores can be combined into a new one using Kitter
rules:

• Maximum rule:

V max = max(s̃s, s̃u)− 0.5

V max > 0⇒ accepted (11)

• Sum rule:

V sum = s̃s + s̃u − 1

V sum > 0⇒ accepted (12)

• Minimum rule:

V min = min(s̃s, s̃u)− 0.5

V min > 0⇒ accepted (13)

• Product rule:

V prod = s̃s ∗ s̃u − 0.5

V prod > 0⇒ accepted (14)

From a practical point of view, the acceptation criteria expressed by Kitter
rules in eqs. (11), (12), (13) and (14) will divide the area of the s̃ss̃u plane
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defined by (0 ≤ s̃s ≤ 1, 0 ≤ s̃u ≤ 1) into two areas: one where the verification
attempt will be accepted and another where it will be rejected. These areas
can be observed in figure 2 where the rejection region is placed towards the
origin.

3.2 Neural Networks

An important feature of algorithms like neural networks is their capability to
learn the parametric distribution directly from the experimental data. Instead
of proposing a formulation for f(·, ·), this function is estimated from the train-
ing material. In this paper, results are presented using simple neural networks
like the ones shown in figure 3:

• A perceptron (figure 3.a).
• A three-layer neural network with two neurons in the hidden layer (figure

3.b).
• A three-layer neural network with three neurons in the hidden layer (figure

3.c).

These two last schemes will be referred to as NN2 and NN3 in the rest of this
paper.

The training of neural networks consists of a learning algorithm that enables
them to find an optimally calculated linear boundary in the decision space.
In a speaker authentication task, the thresholds are therefore substituted by
the network itself that will decide whether a pair of values corresponds to a
customer authentication attempt or not.

Since speaker authentication is a classical two-class classification problem, a
cross-entropy error function [19,20] was used to train the neural networks. The
data is divided into two classes: class C1 corresponds to the data in which the
presumed and actual identities are the same (customer tests) and C2 is the
opposite (impostor tests). The output y of the neural networks represents the
a posteriori probability P (C1/s) for class C1 while the a posteriori probability
of class C2 will be given by P (C2/s) = 1 − y, where s = [su, ss]. This can
be achieved if a target coding scheme is considered for which t = 1 when the
inputs su and ss belong to class C1 (a customer test) and t = 0 when the inputs
belong to C2 (an impostor test). These two probabilities can be combined into
a single expression so that the probability of observing either target value is

P (t/s) = yt(1− y)1−t
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With this interpretation, the likelihood of observing the training data set is
then given by

N∏

n=1

(yn)(tn)(1− yn)(1−tn)

where N is the total number of tokens. For numerical reasons, it is convenient
to minimize the negative logarithm of this likelihood. This leads to the cross-
entropy error function:

E = − 1

N

N∑

n=1

{tnln(yn) + (1− tn)ln(1− yn)}

In this equation, the classification errors in customer (tn = 1) and impostor
(tn = 0) tests are taken into account by left and right part of each term
of the summation, respectively. A modification in the training process was
introduced due to the unbalanced numbers of customer and impostor training
tokens. If N is the total number of training files, Ncus belong to customers
and Nimp belong to impostors. The previous equation is modified to take into
account the fact that Ncus � Nimp (see sec. 4):

E = − 1

N

N∑

n=1

[
Nimp

N
tnln(yn) +

Ncus

N
(1− tn)ln(1− yn)

]

In order to minimize this error function, the well-known back-propagation
algorithm for neural networks was used. After some trials, a learning rate of
λ = 0.25 was used and the iterative algorithm was stopped when (El−1−El) ≤
η with η = 10−6 in all cases.

4 Experimental framework

4.1 The database

Presently, many speaker and speech recognition systems are migrating from
the laboratory demos to many services and products. One of the main prob-
lems in this migration is the mismatch between training and testing condi-
tions in laboratory and training and testing conditions in the real world. This
mismatch can be reduced if real-world databases are used in the laboratory.
Nevertheless, there are not so many public databases available specifically
collected for speaker recognition purposes under real world conditions. We
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can mention COST250 PolyCost database [21] and our own database called
“TelVoice” [22], as two examples of such databases.

All the experiments presented in this paper were conducted using TelVoice.
This database was recorded during 1996, 1997 and 1998 and consists of tele-
phone speech recorded using a PC computer equipped with a Sound Blaster
sound card and a hardware interface connected to the parallel port. This in-
terface was designed and built up in our research laboratory.

The number of speakers is 59 (39 male and 20 female) with 10 phone calls
each. All the fields of the database were recorded in Spanish. The time between
recordings is variable across speakers, ranging from three days to more than
one year. This can be seen as an inconvenience, but this fact introduces realism
into the database.

TelVoice has been carefully designed to obtain much as meaningful material
as possible. In each session, there are 10 items varying from isolated digits,
strings of digits, connected digits, phrases, and free speech.

If the speech content is going to be used in the recognition process, the use of a
set of previously trained speaker-independent models is required to represent
the linguistic units that can appear in the test material. In this case, a set
of 25 phoneme-like models trained using a telephone database was used. The
models are left-to-right 3 state HMM’s with 16 mixtures per state.

4.2 Speech analysis

Some decisions about recording conditions and speech parameterization have
been taken. The voice was sampled at 8 kHz and off-line filtered to remove the
50 Hz electric-supply noise. Energy and 12 mel-cepstra coefficients were com-
puted using a Hamming window with frame length of 20 msec. and a frame
period of 10 msec. Liftering (by a factor of 22) was also used. First deriva-
tives of the energy and the mel-cepstra were appended to the parameters of
each frame. This makes a total of 26 parameters per vector. Parameterization
details can be seen in table 1.

A VAD (Voice Activity Detector) was used to process all the speech material
of the database with the purpose of eliminating the effect of the background
noise in the recognition process. The VAD is similar to the one described
in [23] with some additional modifications to improve its efficiency in noisy
environments and to work in a MBE (Multi-Band Excitation) speech coder
[24].
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4.3 Authentication experiments

Two operating scenarios for a speaker authentication system are differentiated:

• Assessment in real-world conditions. In this case, the values of the authen-
tication thresholds must be estimated in advance or a priori , that is, before
the accessing attempt. In this case, our goal was to find such thresholds
where the system behaves close to the EER (Equal Error Rate) point.
• Assessment in research environment. Assessing the authentication systems

regardless of the thresholds setting problem is the aim. In this case, the
ROC (Receiver Operating Characteristic) curve is used as a figure of merit,
and the EER is drawn from this curve.

The experiments presented in this paper were conducted with a subset of
TelVoice consisting of those speakers with a minimum of 6 recording sessions.
This subset consists of 46 speakers (32 males and 14 females).

4.3.1 Training material

For the speaker verification system, training material consists of:

• Digits 0 to 9 in ascending order (approximately 12 sec.).
• Two fixed phrases: El templo oscuro y triste quedaba a pocos pasos del pala-

cio de la familia real and Las primeras palabras que brotaron de sus labios
fueron para darme las gracias (7 sec. each).

Sessions no. 1 and no. 2 were used as training material. This makes a total of
52 sec. of data per speaker before VAD.

4.3.2 Testing material

As testing material, pronunciations of the Spanish National Identity Card
number were taken. This consists of eight digits (5 sec. before VAD). The
speakers were asked to pronounce it naturally (digit by digit, grouping digits or
as a whole, as they usually do) but consistently across sessions. In each session,
the speakers uttered their number four times, so there are 4 tokens/session ∗
4 test sessions/speaker = 16 test tokens/speaker.

The experiments thus proposed are text-independent , as the speech contents of
the test and the training tokens differ. This allows this system to be deployed
in real-world applications where passwords can be modified.
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4.3.3 Experimental protocol

Both in threshold estimation and in testing, when a speaker is used as a client,
all 4 tokens per session are used. Whenever a speaker performs as an impostor,
only one token per session is used. The motivation behind this election is to
alleviate the unbalance between impostor and client tests in the experimental
setup.

Thresholds can be speaker dependent or universal. When the size of the
database is small, using speaker dependent thresholds may have lower statis-
tical significance than using a global one. In this article results are presented
using global thresholds.

When using a set of speakers for estimating background models, there is a
potential bias if material from these speakers is used in authentication ex-
periments. In a fair test, this material should belong to a set of speakers
independent of the set to be tested upon. To avoid this source of problems,
the set of speakers was divided into two parts (A and B), each including 23
speakers (16 male and 7 female). Then, world models were estimated with
training material from A while recognition experiments were performed using
test tokens from B and viceversa. To avoid problems caused by a possible
biased division of the database, the database was again split into two other
sets (X and Y ) with 23 speakers each and this procedure was repeated.

The details of the experimental protocol is explained in the following. Subindexes
will be used to denote the distinct sessions of the database. For example, X12

corresponds to the first and second sessions belonging to the speakers included
in set X.

4.3.3.1 A priori authentication The training and testing procedures
in the case when a priori calculated thresholds are used are presented in an
algorithm-like notation:

foreach Set in (’A’,’B’,’X’,’Y’)
if (Set == ’A’) then WorldSet = ’B’;
if (Set == ’B’) then WorldSet = ’A’;
if (Set == ’X’) then WorldSet = ’Y’;
if (Set == ’Y’) then WorldSet = ’X’;
Train SpeakersGMMs using Set12;
Train WorldGMM using WorldSet12;
foreach TrainSession in (3,4,5,6)

Calculate Thresholds using
SetTrainSession, SpeakersGMMs, WorldGMM;

foreach TestSession in (3,4,5,6) and TestSession6=TrainSession

16



Obtain %FA and %FR using
SetTestSession, SpeakersGMMs, WorldGMM, Thresholds;

As stated before, tokens from one session were used for a priori threshold
estimation corresponding to the EER points. These thresholds were used to
perform a priori authentication experiments on the rest of the testing material
of the database. The performance of the systems thus measured is given by two
rates, namely false acceptance (%FA) and false rejection (%FR) percentage
rates.

In this case, the number of experimental tests is:

4 sets × 23
speakers

set
× 4

training session

speaker
× 3

testing sessions

training session
×

× 4
tests

testing session
= 4416 clients tests

4 sets × 23
speakers

set
× 4

training session

speaker
× 3

testing sessions

training session
×

× 22
impostors

testing session
× 1

tests

impostor
= 24288 impostors tests

4.3.3.2 A posteriori authentication The training and testing proce-
dures with a posteriori threshold estimation are the following:

foreach Set in (’A’,’B’,’X’,’Y’)
if (Set == ’A’) then WorldSet = ’B’;
if (Set == ’B’) then WorldSet = ’A’;
if (Set == ’X’) then WorldSet = ’Y’;
if (Set == ’Y’) then WorldSet = ’X’;
Train SpeakersGMMs using Set12;
Train WorldGMM using WorldSet12;
Calculate Thresholds using

Set3456, SpeakersGMMs, WorldGMM;
Obtain %EER using

Set3456, SpeakersGMMs, WorldGMM, Thresholds;

To obtain the %EER figures, a methodology close to the one proposed to
perform experiments on PolyCost database [25] has been used.

The total number of experimental tests is:
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4 sets × 23
speakers

set
× 4

sessions

speaker
× 4

tests

session
= 1472 clients tests

4 sets × 23
speakers

set
× 22

impostors

speaker
4
sessions

impostors
× 1

tests

impostor
=

= 8096 impostors tests

5 Experimental results

In this section, experimental results obtained with the verification systems
described in previous sections are presented. All the tests were performed
using the experimental framework presented in section 4 based on the database
TelVoice.

Experimental results obtained with the combination criteria described in sec-
tion 3 are also presented, both for a posteriori and a priori estimated thresh-
olds. When a priori thresholds are used, their values correspond to those cal-
culated for the speaker and utterance verification systems. When a posteriori
thresholds are used, these are calculated specifically for the considered com-
bination criterion.

5.1 Speaker verifier

The first aspect investigated is the relationship between the number of mix-
tures and performance. The performance was evaluated for a GMM-based
speaker verification system with a number of mixtures ranging from 1 to 96.
The number of mixtures of the world-model is 92 or 184. All the models were
trained using the iterative Expectation-Maximization (EM) algorithm [26,27]
on initial estimates obtained using k-means vector quantization [28]. In both
cases 20 iterations were generally sufficient for convergence and the maximum
number of iterations was limited to 60. Covariance-tied models were used
across all the experiments to avoid problems caused by scarcity of data.

• A priori speaker verification: the performance of the speaker verifier system
thus obtained can be seen in table 2. As can be observed, there is little
variation in performance over 16 mixtures.
• A posteriori speaker verification: in table 2 EER’s, which were calculated

when the size of the models varies, can be observed. DET (Detection Error
Tradeoff) curves [29] can also be observed in figure 4. It can be observed
that the performance increases with the number of Gaussians. However,
there is little improvement in performance from 32 to 96 mixtures. The
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reason could be the saturation of the model capability due to the scarcity
of training data.

5.2 Utterance Verifier

The results for the this system in both a priori and a posteriori verification
tasks are included in table 2.

Compared with the Speaker Verifier, the overall performance of this system is
significantly lower. This can be caused by the mismatch between training and
testing conditions. Several techniques can be used to reduce this mismatch and
obtain an improvement in performance, but this topic is out of the scope of this
article, since the emphasis has been put on the advantage of the combination
of verification systems.

5.3 Kitter rules

In the case where speaker or utterance verification systems were used, ROC
curves were calculated when the value of the threshold varies. In this case,
there are two likelihoods (speaker and utterance) and the values of their
thresholds can be placed in pairs in the XY plane. Then, false acceptance
and false rejection percentages can be represented as two surfaces in a three
dimensional space, and the %EER point will correspond to the minimum value
on a line defined by the intersection of these surfaces. For example, figure 5
represents the average of the surfaces obtained in an a posteriori speaker au-
thentication task using the maximum rule. The number of mixtures of the
Speakers’ and the World models is 64 and 92, respectively.

• A priori speaker authentication: in this case, thresholds calculated a priori
for the speaker and utterance verifiers were used. By examining the set of
formulas of eqs. (11) to (14), it can be seen that

V max ≥ V sum ≥ V min ≥ V prod

Then, it can be expected that false acceptance rate will decrease and false
rejection rate will increase from left to right. This predicted behavior cor-
responds to what actually happens, as it can be seen in figure 6.
• A posteriori speaker authentication: the results obtained in this task can

be observed in figure 6. It can be seen that the best performance of these
four combination criteria is obtained using the sum rule. This is consistent
with its higher insensivity to errors in the estimation of the likelihoods, as
presented in section 3.1.
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5.4 Neural networks

• A priori speaker authentication: in table 3 and in figure 6 the results ob-
tained with the neural networks in this task are included. It can be observed
that the neural networks outperform the systems that make use of the Kit-
ter rules. It can also be observed that there is some improvement when the
complexity of the networks is increased from a perceptron to the NN2 case.
However, there is no significant improvement when a NN3 network is used,
due to the scarcity of training data. There is also an unbalanced behavior
due to the scarcity of customers’ tests in training data.

In figure 7 it can be seen how decision frontiers are placed in these
schemes. This figure represents the neural networks where the number of
mixtures for the speaker’s and the world GMMs is 64 and 92, respectively.
• A posteriori speaker authentication: in table 3 and in figure 6 it can be seen

that these architectures outperform Kitter rules criteria. As before, better
results are obtained when using a NN2 than when using a perceptron, but
there is no improvement in using a NN3 instead of a NN2 network.

6 Conclusions

In this paper, speaker authentication systems based on the combination of
several speaker classifiers have been presented. After describing two differ-
ent approaches for building up a speaker authentication system, a theoretical
framework is derived in order to define the combination procedure. The design
of the individual classifiers: the “utterance verifier” and the “speaker verifier”
respectively is carried out taking into account practical implementation is-
sues such as complexity, speaker enrollment time, required resources, etc. A
common “test hypothesis formulation” is used to derive the verification for-
mulation for each individual classifier. A likelihood ratio is formed where the
null and alternate hypotheses are modeled differently depending on the type
of verifier. In the case of the speaker verifier, null hypothesis is modeled using
a speaker GMM and alternate hypothesis is modeled using the world-model
approximation. In the utterance verifier, null hypothesis is approximated by
the log-probability per frame given that the utterance can be modeled by
concatenation of a string of sub-word HMM’s; alternate hypothesis is mod-
eled using the closest HMM’s to the actual string of competitors sub-word
HMM’s. Combination rules as product rule, sum rule, minimum rule, max-
imum rule are used. Neural networks have also been used as a combination
strategy.

The performance of each individual verifier has been estimated using a realistic
database such as TelVoice, and defining a set of comprehensive experiments. In
the case of the speaker verifier, the relationship between the number of Gaus-
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sian mixtures and performance has been investigated. The main conclusion
drawn from the results is that with 16-mixtures GMMs a good compromise
between performance, complexity and adequate use of the training material is
achieved. For speaker authentication purposes, the utterance verifier performs
worse than the speaker verifier. Moreover, there is little room for improve-
ment in this case, apart maybe from the use of better trained HMM models.
Nevertheless, experimental results show that there is always an improvement
in performance when the two verifiers are combined. This is one of the main
conclusions of this paper and the reason why new lines for further work ap-
pear. Regarding the best way of combining, experiments show that the neural
network approximation outperforms the others due to its ability to learn the
optimal operation point from the data.
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[16] C. Garćıa Mateo and C. Lee, A Study on Subword Modelling for Utterance
Verification in Mexican Spanish, Proceedings of 1997 IEEE Workshop on
Automatic Speech Recognition and Understanding (1997).

[17] D. A. Reynolds, Comparison of Background Normalization Methods for Text-
Independent Speaker Verification, Proceedings of the EuroSpeech 2 (1997) 963–
966.

[18] R. A. Sukkar and C. H. Lee, Vocabulary Independent Discriminative Utterance
Verification for Nonkeyword Rejection in Subword Based Speech Recognition,
IEEE Transactions on Speech and Audio Processing 2 (1994) 420–429.

[19] C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University
Press, 1995) 230–236.

[20] G. Hinton, Connectionist Learning Procedures, Technical report CMU-87-115
(Carnegie Mellon University, 1987).

[21] D. Petrovska, J. Hennebert, H. Melin, and D. Genoud, POLYCOST:
A Telephone-Speech Database for Speaker Recognition, Proceedings of the
Workshop on Speaker Recognition and its Commercial and Forensic Applications
(RLA2C) (Avignon, France, 1998) 211–214.
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Table 1
TelVoice - Parameterization details for the front-end block

Parameterization: MFCC’s + Energy + ∆-MFCC’s + ∆-Energy

No. of frames for ∆ calculation: 5

No. of vector coefficients: (12 + 1) ∗ 2 = 26

Window type and length: Hamming 20 msec.

Frame period: 10 msec.

No. of mel filters: 20

Preemphasis: k = 0

Liftering: 22

Passband: 300-3400 Hz
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Table 2
Speaker and utterance verification performance

Speaker verification

No. Mixtures A post. A priori

World Speaker %EER %FA %FR

1 16.55 16.26 17.46

4 10.00 9.93 10.30

8 8.90 8.74 9.35

92 16 9.15 9.17 9.60

32 8.62 8.35 9.04

64 8.29 8.03 8.88

96 8.35 8.37 8.54

1 19.38 19.25 19.70

4 10.80 10.87 11.16

8 8.92 8.65 9.47

184 16 8.97 8.70 9.51

32 8.25 7.93 8.70

64 7.86 7.91 8.40

96 8.00 7.78 8.56

Utterance 12.31 12.15 11.96
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Table 3
Speaker Authentication using Neural Network Combination

Perceptron NN2 NN3

Mixtures A post. A priori A post. A priori A post. A priori

W. Sp. %EER %FA %FR %EER %FA %FR %EER %FA %FR

1 6.44 6.39 7.20 5.89 4.59 8.33 5.93 4.21 8.88

4 5.12 4.89 6.36 4.02 3.96 5.53 3.90 3.75 5.77

8 4.72 4.21 5.93 3.56 3.40 5.25 3.61 3.10 5.66

92 16 4.76 4.17 5.89 3.44 3.33 4.98 3.38 3.15 5.57

32 4.59 4.08 5.77 3.35 3.14 5.64 3.48 3.14 5.41

64 4.54 3.98 5.73 3.38 3.11 5.53 3.52 2.82 5.48

96 4.62 4.06 5.89 3.48 3.03 5.75 3.66 2.90 6.09

1 7.17 7.09 7.90 6.48 5.46 8.76 6.06 4.85 9.28

4 5.16 5.01 6.34 4.59 4.22 6.09 4.13 4.21 6.32

8 4.48 4.31 5.75 3.31 3.40 4.82 3.45 3.06 5.55

184 16 4.46 3.99 5.80 3.04 3.17 4.62 3.09 2.77 5.66

32 4.55 3.88 5.80 3.10 2.97 5.37 3.19 2.99 5.21

64 4.42 3.83 5.96 3.26 3.12 5.10 3.44 2.85 5.32

96 4.60 3.95 5.82 3.37 3.15 5.39 3.47 2.85 5.77
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José L. Alba received the MSc and PhD in Telecommunications engineer-
ing from the University of Santiago and University of Vigo (Spain) in 1990
and 1997, respectively, where he graduated cum laude. His research interests
include neural networks for classification applications, image segmentation,
statistical pattern recognition, automatic speech and speaker recognition and
biometrics. He is associate professor of discrete signal processing and image
processing at the University of Vigo, Spain. He is member of IEEE.

34


