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Abstract. To date, attempts for applying syntactic information in the
document-based retrieval model dominant have led to little practical
improvement, mainly due to the problems associated with the integration
of this kind of information into the model. In this article we propose the
use of a locality-based retrieval model for reranking, which deals with
syntactic linguistic variation through similarity measures based on the
distance between words. We study two approaches whose effectiveness
has been evaluated on the CLEF corpus of Spanish documents.

1 Introduction

Syntactic processing has been applied repeatedly in the field of Information
Retrieval (IR) for dealing with the syntactic variation present in natural language
texts [14, 8, 11], although its use in languages other than English has not as yet
been studied in depth. In order to apply these kind of techniques, it is necessary
to perform some kind of parsing process, which itself requires the definition of
a suitable grammar. For languages lacking advanced linguistics resources, such
as wide-coverage grammars or treebanks, the application of these techniques is
a real challenge. In the case of Spanish, for example, only a few IR experiments
involving syntax have been performed [1, 18, 20, 19]. Even when reliable syntactic
information can be extracted from texts, the issue that arises is how to integrate
it into an IR system. The prevalent approaches consist of a weighted combination
of multi-word terms —in the form of head-modifier pairs— and single-word terms
—in the form of word stems—. Unfortunately, the use of multi-word terms has
not proven to be effective enough, regardless of whether they have been obtained
by means of syntactic or statistical methods, mainly due to the difficulty of
solving the overweighting of complex terms with respect to simple terms [13].

In this context, pseudo-syntactic approaches based on the distance between
terms arise as a practical alternative that avoids the problems listed above as a
result of not needing any grammar or parser, and because the information about
the occurrence of individual words can be integrated in a consistent way with
the information about proximity to other terms, which in turn is often related
with the existence of syntactic relations between such terms.



In this work we propose the use of a locality-based retrieval model, based on
a similarity measure computed as a function of the distance between terms, as a
complement to classic IR techniques based on indexing single-word terms, with
the aim of increasing the precision of the documents retrieved by the system in
the case of Spanish.

The rest of the article is organized as follows. Section 2 introduces the locality-
based retrieval model and our first approach for integrating it into our system;
the experimental results of this first proposal are shown in Section 3. A second
approach, based on data fusion, is described in Section 4, and its results are
discussed in Section 5. Finally, our conclusions and future work are presented in
Section 6.

2 Locality-Based IR

2.1 The Retrieval Model

In the document-based retrieval model prevalent nowadays, an IR system
retrieves a list of documents ranked according to their degree of relevance
with respect to the information need of the user. In contrast, a locality-based

IR system goes one step further, and looks for the concrete locations in the
documents which are relevant to such a need. Passage retrieval [10] could be
considered as an intermediate point between these two models, since its aim is to
retrieve portions of documents (called passages) relevant to the user. However,
passage retrieval is closer to document-based than to locality-based retrieval:
once the original documents have been split into passages they are ranked using
traditional similarity measures. In this case, the main difficulty comes from
specifying what a passage is, including considerations about size and overlapping
factors, and how they can be identified.

In contrast, the locality-based model considers the collection to be indexed
not as a set of documents, but as a sequence of words where each occurrence
of a query term has an influence on the surrounding terms. Such influences
are additive, thus, the contributions of different occurrences of query terms are
summed, yielding a similarity measure. As a result, those areas of the texts with
a higher density of query terms, or with important query terms, show peaks in
the resulting graph, highlighting those positions of the text which are potentially
relevant with respect to the query. A graphical representation of this process is
shown in Fig. 1. It is worth noting that relevant portions are identified without
the need to perform any kind of splitting in the documents, as is done in passage
retrieval.

Next, we describe the original proposal of de Kretser and Moffat for the
locality-based model [5, 6].

2.2 Computing the Similarity Measure

In the locality-based model the similarity measure only needs to be computed
for those positions of the text in which query terms occur, a characteristic which
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Fig. 1. Computing the similarity measure in a locality-based model: (a) positions where
query terms occur and their regions of influence; (b) the resultant similarity curve

makes its application possible in practical environments due to its computational
cost being relatively low.

The contribution to the similarity graph of a given query term is determined
by a similarity contribution function ct defined according to the following
parameters [5]:

– The shape of the function, which is the same for all terms.
– The maximum height ht of the function, which occurs in the position of the

query term.
– The spread st of the function, that is, the scope of its influence.
– The distance, in words, with respect to other surrounding words, d = |x− l|,

where l is the position of the query term and x is the position of the word
in the text where we want to compute the similarity score.

Several function shapes are described in [5], but we only show here those
with which we obtained better results in Spanish. They are the triangle (tri)
and the circle (cir) function, defined by equations 1 and 2, respectively, and
whose graphical representation is shown in Fig. 2:

ct(x, l) = ht(1 − d/st) . (1)

ct(x, l) = ht

√

1 − (d/st)2 . (2)

with ct(x, l) = 0 when |x − l| > st.
The height ht of a query term t is defined as an inverse function of its

frequency in the collection:



s+ tst− s+ tst−0

t

0

thh

1) triangle 2) circle

h
e
i
g
h
t

h
e
i
g
h
t

spread spread

Fig. 2. Shapes of the similarity contribution function ct

ht = fq,t loge(N/ft) . (3)

where N is the total number of terms in the collection, ft is the number of times
term t appears in the collection, and fq,t is the within-query frequency of the
term.

On the other hand, the spread st of the influence of a term t is also defined as
an inverse function of its frequency in the collection, but normalized according
to the average term frequency:

st =
n

N

N

ft

=
n

ft

. (4)

where n is the number of unique terms in the collection, that is, the size of the
vocabulary.

Once these parameters have been fixed, the similarity score assigned to a
location x of the document in which a term of the query Q can be found is
calculated as:

CQ(x) =
∑

t∈Q

∑

l∈It

|l−x|≤st

term(x)6=term(l)

ct(x, l) . (5)

where It is the set of word locations at which a term t of the query Q occurs,
and where term(w) represents the term associated to the location w. In other
words, the degree of similarity or relevance associated with a given location is
the sum of all the influences exerted by the rest of query terms within whose
spread the term is located, excepting other occurrences of the same term that
exist at the location examined [6].

Finally, the relevance score assigned to a document D is given in function of
the similarities corresponding to occurrences of query terms that this document
contains. This point is discussed in detail below.

2.3 Adaptations of the Model

The locality-based model not only identifies the relevant documents but also
the relevant locations they contain, allowing us to work at a more detailed level



than classical IR techniques. Thus, we have opted for using this model in our
experiments. Nevertheless, before doing so, the model had to be adapted to our
needs, which makes our approach different from the original proposal of the
model [5, 6].

The approach we have chosen for integrating distance-based similarity in our
IR system consists of postprocessing the documents obtained by a document-
based retrieval system. This initial set of documents is obtained through a base
IR system —we name it lem— which employs content-word lemmas (nouns,
adjectives and verbs) as index terms. This list of documents returned by lem is
then processed using the locality-based model, taking the final ranking obtained
using distance-based similarity as the final output to be returned to the user.

It should be pointed out that the parameters of height, ht, and spread, st,
employed for the reranking are calculated according to the global parameters of
the collection, not according to the parameters which are local to the subset of
documents returned, in order to avoid the correlation-derived problems it would
introduce.1

Another aspect in which our approach differs from the original model is the
employment of lemmatization, instead of stemming, for conflating queries and
documents. We have made this choice due to the encouraging results previously
obtained with such an approach, with respect to stemming, in the case of
Spanish [20].

The third point of difference corresponds to the algorithm for calculating the
relevance of a document, obtained from the similarity scores of its query term
occurrences. Instead of the original iterative algorithm [5], our approach defines
the similarity score sim(D,Q) of a document D with respect to a query Q as
the sum of all the similarity scores of the query term occurrences it contains:

sim(D, Q) =
∑

x∈D
term(x)∈Q

CQ(x) . (6)

3 Experimental Results Using Distances

Our approach has been tested using the Spanish monolingual corpus of the 2001
and 2002 CLEF editions [15], composed of 215,738 news reports provided by
EFE, a Spanish news agency. The 100 queries employed, from 41 to 140, consist
of three fields: a brief title statement, a one-sentence description, and a more
complex narrative specifying the relevance assessment criteria.

As mentioned in Sect. 2.3, the initial set of documents to be reranked is
obtained through the indexing of content word lemmas (lem). For this purpose,
the documents were indexed with the vector-based engine smart [3], using the
atn·ntc weighting scheme. In order to improve the performance of the whole

1 For example, the parameter ft, corresponding to the number of occurrences of a
term t, is the number of occurrences of t in the entire collection, not the number of
occurrences of t in the set of documents to be reranked.



Table 1. Reranking based on distances

short queries long queries
stm lem tri cir stm lem tri cir

Documents 99k 99k 99k 99k 99k 99k 99k 99k
Relevant (5548 expected) 5086 5207 5207 5207 5208 5234 5234 5234
Non-interpolated precision .5210 .5235 .4473 .4464 .5638 .5648 .4802 .4703
Document precision .5502 .5814 .5154 .5188 .5925 .6038 .5366 .5376
R-precision .4952 .4978 .4438 .4453 .5316 .5335 .4574 .4490

Precision at .00 recall .8426 .8260 .8402 .8394 .9028 .8788 .8771 .8639
Precision at .10 recall .7294 .7431 .7551 .7533 .7910 .7989 .8167 .8022

Precision at .20 recall .6746 .6936 .6550 .6624 .7326 .7420 .7070 .6909
Precision at .30 recall .6135 .6380 .5764 .5806 .6763 .6887 .6066 .5996
Precision at .40 recall .5812 .5900 .5045 .5052 .6401 .6499 .5417 .5314
Precision at .50 recall .5470 .5520 .4496 .4515 .5975 .6058 .4894 .4819
Precision at .60 recall .5078 .5099 .3882 .3850 .5452 .5502 .4184 .4045
Precision at .70 recall .4518 .4498 .3360 .3340 .4816 .4816 .3654 .3547
Precision at .80 recall .3882 .3796 .2750 .2692 .4056 .4022 .3042 .2929
Precision at .90 recall .3044 .2923 .1933 .1917 .3356 .3150 .2023 .1944
Precision at 1.0 recall .1897 .1756 .1031 .1014 .2054 .1918 .1062 .1000

Precision at 5 docs .6182 .6182 .6141 .6121 .6808 .6747 .6667 .6606
Precision at 10 docs .5717 .5758 .5596 .5596 .6182 .6202 .5929 .5869
Precision at 15 docs .5279 .5380 .5111 .5192 .5670 .5798 .5441 .5394
Precision at 20 docs .4965 .5071 .4803 .4818 .5338 .5556 .5081 .5056
Precision at 30 docs .4434 .4582 .4259 .4229 .4822 .5030 .4545 .4566
Precision at 100 docs .2935 .3016 .2691 .2696 .3119 .3171 .2811 .2812
Precision at 200 docs .1937 .2002 .1863 .1875 .2053 .2060 .1926 .1932
Precision at 500 docs .0945 .0981 .0964 .0964 .0981 .0985 .0979 .0982
Precision at 1000 docs .0514 .0526 .0526 .0526 .0526 .0529 .0529 .0529

system, we have tried to obtain the best possible starting set of documents by
applying pseudo-relevance feedback (blind-query expansion) adopting Rocchio’s
approach [16]:

Q1 = αQ0 + β

n1
∑

k=1

Rk

n1
− γ

n2
∑

k=1

Sk

n2
. (7)

where Q1 is the new query vector, Q0 is the vector of the initial query, Rk is
the vector of relevant document k, Sk is the vector of non-relevant document
k, n1 is the number of relevant documents, n2 is the number of non-relevant
documents, and α, β and γ are, respectively, the parameters that control the
relative contributions of the original query, relevant documents, and non-relevant
documents. Our system expands the initial query automatically with the best 10
terms of the 5 top ranked documents, and using α = 1.40, β = 0.10 and γ = 0.

It should be pointed out that the distance-based reranking process is
performed according to the terms of the original query, without taking into
account the terms added during the feedback. This is because there is no
guarentee that these terms were syntactically related with the original query
terms, since they only co-occur in the documents with such terms.

Two series of experiments have been carried out. Firstly, employing queries
obtained from the title and description fields —short queries— and, secondly,
employing queries obtained from the three fields, that is title, description and
narrative —long queries—. It should be noticed that in the case of long queries,



the terms extracted from the title field are given double relevance with respect
to description and narrative, since the former summarizes the basic semantics of
the query.

The results obtained are shown in Table 1. The first column of each group
shows the results obtained through a standard approach based on stemming
(stm), also using pseudo-relevance feedback; the second column contains the
results of the indexing of lemmas (lem) before the reranking, our baseline; the
two other columns show the results obtained after reranking lem by means of
distances employing a triangle (tri) and circle (cir) function.

The performance of the system is measured using the parameters contained
in each row: number of documents retrieved, number of relevant documents
retrieved (5548 expected), average precision (non-interpolated) for all relevant
documents (averaged over queries), average document precision for all relevant
documents (averaged over relevant documents), R-precision, precision at 11
standard levels of recall, and precision at N documents retrieved. For each
parameter we have marked in boldface those values where there is an
improvement with respect to the baseline lem.

As these results show, reranking through distances has caused a general
drop in performance, except for low recall levels, where results are similar or
sometimes even better. We can therefore conclude that this first approach is of
little practical interest.

4 Data Fusion through Intersection

4.1 Analysis of Results

Since the set of documents retrieved by the system is the same, the drop in
performance in this first approach can only be caused by a worse ranking of
the results because of the application of the distance-based model, and for this
reason we decided to analyze the changes in the distribution of relevant and
non-relevant documents in the K top retrieved documents. The results obtained
in the case of using short queries and the triangle function (tri) are shown in
Table 2. Changes in the type of query, short or long, or in the shape of the
function, triangle or circle, has little effect on these results and the conclusions
that can be inferred from them.

Each row contains the results obtained when comparing the K top documents
retrieved by lem (set of results L), with those K top documents retrieved
after their reranking using distances (set of results D). The columns show
the results obtained for each of the parameters considered: average number of
new relevant documents obtained through distances (D \ L), average number
of relevant documents lost using distances (L \ D), average number of relevant
documents preserved (L∩D), overlap coefficient for relevant documents (Rover),
precision of lem at K top documents (Pr(L)), precision at K top documents
after reranking through distances (Pr(D)), precision for the documents common
to both approaches in their K top documents (Pr(L∩D)). The right-hand side of



Table 2. Document distribution (short queries - triangle function)

relevant docs. non-relevant docs.
K D \ L L \ D L ∩ D Rover Pr(L) Pr(D) Pr(L ∩ D) D \ L L \ D L ∩ D Nover

5 1.60 1.62 1.44 0.47 0.61 0.61 0.77 1.54 1.52 0.42 0.22
10 2.73 2.89 2.81 0.50 0.57 0.55 0.68 3.14 2.98 1.32 0.30
15 3.37 3.77 4.22 0.54 0.53 0.51 0.65 5.13 4.73 2.28 0.32
20 3.92 4.44 5.59 0.57 0.50 0.48 0.63 7.24 6.72 3.25 0.32
30 4.66 5.62 7.99 0.61 0.45 0.42 0.59 11.84 10.88 5.51 0.33
50 5.95 9.16 20.69 0.73 0.60 0.53 0.42 45.04 41.83 28.32 0.39
100 5.10 7.84 31.78 0.83 0.40 0.37 0.30 88.13 85.39 74.99 0.46
200 1.99 2.82 45.72 0.95 0.24 0.24 0.14 164.28 163.45 288.01 0.64

the table shows their equivalents for the case of non-relevant documents: average
number of non-relevant documents added, lost and preserved, together with their
degree of overlap.

Several important facts can be observed in these figures. Firstly, that the
number of relevant documents retrieved by both approaches in their K top
documents is very similar —a little smaller for distances—, as can be inferred
from the number of incoming and outgoing relevant documents, and from the
precisions at the top K documents of both approaches. This confirms that the
problem has its origin in a bad reranking of the results.

The second point we need to point out refers to the overlap coefficients of
both relevant (Rover) and non-relevant (Nover) documents. These coefficients,
defined by Lee in [12], show the degree of overlap among relevant and non-
relevant documents in two retrieval results. For two runs run1 and run2, they
are defined as follows:

Rover =
2 |Rel(run1) ∩ Rel(run2)|

|Rel(run1)| + |Rel(run2)|
. (8)

Nover =
2 |Nonrel(run1) ∩ Nonrel(run2)|

|Nonrel(run1)| + |Nonrel(run2)|
. (9)

where Rel(X) and Nonrel(X) represent, respectively, the set of relevant and
non-relevant documents retrieved by the run X.

It can be seen in Table 2 that the overlap factor among relevant documents
is much higher than among non-relevant documents. Therefore, it obeys the
unequal overlap property [12], since both approaches return a similar set on
relevant documents, but a different set on non-relevant documents. This is a
good indicator of the effectiveness of fusion of both runs.

Finally, and also related with the previous point, the figures show that
the precision for the documents common to both approaches in their K top
documents (Pr(L ∩ D)) is higher than the corresponding precisions for lemmas
(Pr(L)) and distances (Pr(D)); that is, the probability of a document being
relevant is higher when it is retrieved by both approaches. In other words, the
more runs a document is retrieved by, the higher the rank that should be assigned
to the document [17].



According to these observations, we decided to take a new approach for
reranking, this time through data fusion, by combining the results obtained
initially with the indexing of lemmas with the results obtained when they are
reranked through distances. Next, we describe this approach.

4.2 Description of the Algorithm

Data fusion is a technique of combination of evidences that consists of combining
the results retrieved by different representations of queries or documents, or by
different retrieval techniques [7, 12, 4].

In our data fusion approach, we have opted for using a boolean criterion
instead of combining scores based on similarities [7, 12] or ranks [12].

Once the value K is set, the documents are retrieved in the following order:

1. First, the documents contained in the intersection of the top K documents
retrieved by both approaches: LK ∩DK . Our aim is to increase the precision
of the top documents retrieved.

2. Next, the documents retrieved in the top K documents by only one of
the approaches: (LK ∪ DK) \ (LK ∩ DK). Our aim is to add to the top
of the ranking those relevant documents retrieved only by the distance-
based approach at its top, but without harming the ranking of the relevant
documents retrieved by the indexing of lemmas.

3. Finally, the rest of documents retrieved using lem: L \ (LK ∪ DK).

where L is the set of documents retrieved by lem, LK is the set of the top K

documents retrieved by lem, and DK is the set of the top K documents retrieved
by applying distances.

With respect to the internal ranking of the results, we will take the ranking
obtained with lem as reference, because of its better behavior. In this way, when
a subset S of results is retrieved, they will be retrieved in the same relative order
they had when they were retrieved by lem.2

5 Experimental Results with Data Fusion

After a previous phase of tuning of K, in which different values of K were tested3,
a value K = 30 was chosen as the best compromise, since although lower values
of K showed peaks of precision in the top documents retrieved, their global
behavior was worse.

Table 3 shows the results obtained with this new approach. Column tri shows
the results obtained by means of the fusion through intersection of the set of
documents initially retrieved with lem with the documents retrieved by applying
reranking through distances using a triangle function. The results corresponding
to the circle function are showed in cir.
2 That is, if the original sequence in lem was d2-d3-d1 and a subset {d1,d3} is going

to be returned, the documents should be obtained in the same relative order as in
the original results: d3-d1.

3 K ∈ {5, 10, 15, 20, 30, 50, 75, 100, 200, 500}.



Table 3. Reranking through data fusion; K=30

short queries long queries
stm lem tri cir stm lem tri cir

Documents 99k 99k 99k 99k 99k 99k 99k 99k
Relevant (5548 expected) 5086 5207 5207 5207 5208 5234 5234 5234
Non-interpolated precision .5210 .5235 .5204 .5206 .5638 .5648 .5654 .5647
Document precision .5502 .5814 .5829 .5836 .5925 .6038 .6083 .6094

R-precision .4952 .4978 .4911 .4911 .5316 .5335 .5311 .5306

Precision at .00 recall .8426 .8260 .8424 .8428 .9028 .8788 .8871 .8901

Precision at .10 recall .7294 .7431 .7520 .7522 .7910 .7989 .8052 .8075

Precision at .20 recall .6746 .6936 .7043 .7059 .7326 .7420 .7501 .7496

Precision at .30 recall .6135 .6380 .6434 .6447 .6763 .6887 .6975 .6983

Precision at .40 recall .5812 .5900 .5967 .5965 .6401 .6499 .6577 .6595

Precision at .50 recall .5470 .5520 .5447 .5454 .5975 .6058 .6092 .6141

Precision at .60 recall .5078 .5099 .4997 .4999 .5452 .5502 .5443 .5362
Precision at .70 recall .4518 .4498 .4325 .4282 .4816 .4816 .4729 .4644
Precision at .80 recall .3882 .3796 .3665 .3653 .4056 .4022 .3929 .3885
Precision at .90 recall .3044 .2923 .2846 .2857 .3356 .3150 .3045 .3036
Precision at 1.0 recall .1897 .1756 .1687 .1684 .2054 .1918 .1862 .1857

Precision at 5 docs .6182 .6182 .6303 .6343 .6808 .6747 .6929 .6949

Precision at 10 docs .5717 .5758 .5929 .5970 .6182 .6202 .6525 .6495

Precision at 15 docs .5279 .5380 .5522 .5542 .5670 .5798 .5993 .5980

Precision at 20 docs .4965 .5071 .5217 .5207 .5338 .5556 .5672 .5646

Precision at 30 docs .4434 .4582 .4582 .4582 .4822 .5030 .5030 .5030
Precision at 100 docs .2935 .3016 .3040 .3044 .3119 .3171 .3182 .3193

Precision at 200 docs .1937 .2002 .2006 .2008 .2053 .2060 .2064 .2064

Precision at 500 docs .0945 .0981 .0982 .0982 .0981 .0985 .0987 .0987

Precision at 1000 docs .0514 .0526 .0526 .0526 .0526 .0529 .0529 .0529

The improvements attained with this new approach —in boldface— are
general, particularly in the case of the precision at N documents retrieved.
Moreover, there are no penalizations for non-interpolated precision and R-
precision.

6 Conclusions and Future Work

In this article we have proposed the use of a distance-based retrieval model, also
called locality-based, which allows us to face the problem of syntactic linguistic
variation in text conflation employing a pseudo-syntactic approach.

Two approaches were proposed for this purpose, both based on reranking the
results obtained by indexing content word lemmas. The first approach, where
the ranking obtained by means of the application of the locality-based model
is the final ranking to be retrieved, did not get, in general, good results. After
analyzing the behavior of the system, a new approach was taken, this time based
on data fusion, which employs the intersection of the sets of documents retrieved
by both approaches as reference for the reranking. This second approach was
fruitful, since it obtained consistent improvements in the ranking at all levels,
without harming other aspects.

With respect to future work, several aspects should be studied. Firstly, we
intend to extend our experiments to other retrieval models apart from the vector



model, in order to test its generality. Secondly, we aim to improve the system
by managing not only syntactic variants but also morphosyntactic variants [9].

Two new applications of this locality-based approach are also being
considered. Firstly, in Query Answering, where it will in all probability prove
most useful, since this distance-based model allows us to identify the relevant
locations of a document, which probably contain the answer, with respect to the
query. Once the relevant locations are identified, the answer would be extracted
through further in-depth linguistic processing. Secondly, its possible application
in query expansion through local clustering based on distances [2] is also being
studied.
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