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Abstract. We consider a set of natural language processing techniques
based on finite-state technology that can be used to analyze huge
amounts of texts. These techniques include an advanced tokenizer, a
part-of-speech tagger that can manage ambiguous streams of words, a
system for conflating words by means of derivational mechanisms, and
a shallow parser to extract syntactic-dependency pairs. We propose to
use these techniques in order to improve the performance of standard
indexing engines.

1 Introduction

In recent years, there has been a considerable amount of interest in using Nat-
ural Language Processing (NLP) in Information Retrieval (IR) research, with
specific implementations varying from the word-level morphological analysis to
syntactic parsing to conceptual-level semantic analysis. In this paper we con-
sider the employment of a set of practical NLP techniques built on finite-state
technology that make them adequate for dealing with large amounts of texts.
Finite-state technology is sometimes characterized as ad-hoc. However, we pro-
pose a sequence of finite-state based processes, where each stage corresponds to
intuitive linguistic elements, reflecting important universals about language:

– The existence of individual words and idioms forming each sentence.
– The existence of different categories of word carrying the semantics of the

sentence: nouns, adjectives and verbs.
– The existence of semantic relations between words belonging to different

categories (e.g. the noun corresponding to the action of a verb).
– The existence of basic syntactic structures relating words within a sentence,

such as the noun-modifier, subject-verb or verb-object relations.

The scheme of the paper follows the processing stages shown in Fig. 1. Firstly,
in Sect. 2, we describe the preprocessor, an advanced tokenizer which accounts
for a number of complex linguistic phenomena, as well as for pre-tagging tasks.
Section 3 shows the tagger, which is based on Hidden Markov Models with
disambiguation and lemmatization capabilities. Next, in Sect. 4, we describe the
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Fig. 1. General architecture of the system

main morphological mechanisms of word formation, and their application to the
automatic generation of morphological families. Section 5 describes a shallow
parser working on syntactic and morpho-syntactic variants of noun phrases for
the extraction of syntactic dependency pairs. The evaluation of the proposed
techniques is performed in Sect. 6. Section 7 presents final conclusions.

2 The Preprocessor

Current taggers assume that input texts are correctly segmented in tokens or
high level information units that identify every individual component of the
texts. This working hypothesis is not realistic due to the heterogeneous nature
of the application texts and their sources. For this reason, we have developed a
preprocessor module [4, 1], an advanced tokenizer which performs the following
tasks:

Filtering. Texts are converted from source format (e.g. HTML or XML) to
plain text, and delimiters are compacted (e.g. it removes multiple blanks or
blanks at beginning of sentences).

Tokenization. Every individual word as well as every punctuation mark will
be a different token, taking into account abbreviations, acronyms, numbers



with decimals and dates in numerical format. For this purpose, we use two
dictionaries, one of abbreviations and another one of acronyms, and a small
set of rules to detect numbers and dates.

Sentence Segmentation. The general rule consists of separating a sentence
when there is a dot followed by a capital letter. However, it must be taken
into account certain abbreviations to avoid marking the end of a sentence at
their dots.

Morphological Pretagging. The preprocessor tags elements whose tag can
be deduced from the morphology of the word, and there is no more reliable
way to do it. In this step, for instance, numbers and dates are identified.

Contraction Splitting. Contractions are split into their different tokens, as-
signing a tag to every one of them, by using external information on how
contractions are decomposed. For instance, the Spanish contraction del (of
the) is decomposed into the preposition de (of ) and the article el (the).

Enclitic Pronouns. Verb stems are separated from their enclitic pronouns,
tagging every one of them correctly. To perform this function, we need to
consult a dictionary with as many verbal forms as possible, a dictionary
containing the greatest possible number of verbal stems capable of presenting
enclitic pronouns, a list with all the valid combinations of enclitic pronouns,
and a list with the whole set of enclitic pronouns, together with their tags and
lemmas. As an example, the Spanish word comerlo (to eat it) is decomposed
in comer (which is the infinitive to eat) and lo (which is the pronoun it).

Expression Identification. The different tokens that make up an expression
are joined together [2], using a dictionary with the expressions that are
uniquely expressions, e.g. a pesar de (in spite of ), and a dictionary of
phrases that may be expressions or not, e.g. sin embargo (however or with-

out seizure). The preprocessor simply generates the possible segmentations,
and then the tagger selects one of those alternatives later.

Numeral Identification. Consecutive numerals are joined together in order
to build a compound numeral and so obtain only one token. For instance,
every component of mil ciento veinticinco (one thousand one hundred

and twenty-five) is joined with the rest in the same way as the components
of an expression. Unlike the case of expressions, the tag assigned by the
preprocessor here is definitive.

Proper Noun Training. Given a sample of the texts that are going to be
indexed, the preprocessor identifies the words that begin with a capital letter
and appear in non-ambiguous positions, i.e. in positions where if a word
begins with a capital letter then it is a proper noun. For instance, words
appearing after a dot are not considered, and words in the middle of the
text are considered. It also identifies sequences of capitalized words connected
by some valid connectives like the preposition of and definite articles. The
proper nouns detected are added to a trained dictionary.

Proper Noun Identification. Using a specific dictionary of proper nouns and
the trained dictionary, we are able to detect proper nouns whether simple or
compound, and either appearing in positions ambiguous or not. This task is
explained in detail in [1].
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Fig. 2. General architecture of the preprocessor

The general structure of this first module is shown in Fig. 2. As we can
see, there are two processing modes. Firstly, there is an off-line process, during
indexing time, where the documents to be indexed are tagged. This off-line
process consists of two steps. In the first step, a subset of the documents is used
for proper noun training, and in a second step, the data obtained are employed
to tag the entire document database. The other main processing mode is an on-
line process during querying time where the query is tagged. The data obtained
in the proper noun training phase during indexing process is also employed here
for tagging the query.

3 The Tagger

A second order Hidden Markov Model (HMM) is used to perform part-of-speech
tagging. The states of the model represent pairs of tags, and outputs represent
the words. Transition probabilities depend on the states, thus pairs of tags.
Output probabilities only depend on the most recent category. To be explicit,



we use the Viterbi algorithm to calculate:

arg max
t1...tn

n∏

i=1

[P (wi|ti) × P (ti|ti−2, ti−1)]

for a given sentence of words w1 . . . wn of length n, where t1 . . . tn are elements
of the tagset. Transition and output probabilities are estimated from a tagged
corpus. As a first step, we use the maximum likelihood probabilities derived from
relative frequencies. As a second step, contextual frequencies are smoothed and
lexical frequencies are completed by handling words that do not appear in the
training corpus but are present in external dictionaries.

Trigram probabilities generated from a corpus cannot be used directly be-
cause of the sparse-data problem, which means that there are insufficient in-
stances for each trigram to reliably estimate the probability. The smoothing
paradigm that delivers the best results is linear interpolation of unigrams, bi-
grams and trigrams. Therefore, we estimate a trigram probability as follows:

P (t3|t1, t2) = λ3 P̂ (t3|t1, t2) + λ2 P̂ (t3|t2) + λ1 P̂ (t3)

where λ1 + λ2 + λ3 = 1, so P again represents probability distributions. The
values of λ1, λ2 and λ3 are estimated by deleted interpolation.

Given an unknown word, its candidate tags and their probabilities are set
according to the ending of the word in question. The probability distribution of
a particular suffix is generated from all words in the training set that share the
same suffix of some predefined maximum length. Probabilities are then smoothed
by successive abstraction [9]. This method obtains a proper probability distri-
bution for each tag and for each suffix length, as needed by the HMM.

Sometimes we have to deal with languages with very few available linguistic
resources. Currently, the typical situation in Spanish processing is very short
training texts, but very large dictionaries, since the morphology of the language
is well-known and the effort made to formalize it has been much greater. The
most intuitive way to integrate a dictionary is the Adding One method, which
consists of using the dictionary as an additional tagged corpus where a frequency
of 1 is assigned to each word-tag pair. However, this integration does not produce
a coherent representation of the model we are estimating, and it can produce im-
portant alterations in the working parameters. This leads us to consider another
method based on the Good-Turing formulas [7]. Every word-tag pair present
only in the external dictionary can be seen as an event with null frequency in
the training corpus, and the Good-Turing formulas are themselves a method
able to assign probabilities greater than 0 to these rare but existing events. In
addition, this technique produces less distortion of the model and increases the
performance of the tagging process when the training corpus is small [5].

Due to the ambiguous segmentations obtained during preprocessing, as it
was described in Sect. 2, this tagger must be able to deal with streams of tokens
of different lengths: it not only has to decide the tag to be assigned to every
token, but also to decide whether some of them form or not the same term, and



assign the appropriate number of tags on the basis of the alternatives provided
by the preprocessor. To perform this process, we consider the evaluation of every
stream of tokens and their subsequent comparison, in order to select the most
probable one, as indicated in [3]. It is also necessary to define some objective
criterion for that comparison. When the tagging paradigm used is the framework
of the hidden Markov models, as is our case, that criterion is the comparison
of the normalization of the cumulative probabilities. One reason to support the
use of hidden Markov models is that, in other tagging paradigms, the criteria
for comparison may not be so easy to identify.

Once a text has been tagged, content words (nouns, verbs, adjectives) are ex-
tracted to be indexed. In this way we solve the problems derived from inflection
in Spanish. Therefore, recall is remarkably increased. With regard to computa-
tional cost, the running cost of a lemmatizer-disambiguator is linear in relation
to the length of the word and cubic in relation to the size of the tagset, which
is a constant. As we only need to know the grammatical category of the word,
the tagset is small and therefore the increase in cost with respect to classical
approaches (stemmers) becomes negligible.

4 Morphological Families

Once inflectional variation has been solved, the next logical step is to solve the
problems derived from derivational morphology. Spanish has a great productiv-
ity and flexibility in its word formation mechanisms by using a rich and complex
productive morphology, preferring derivation to other mechanisms of word for-
mation. We define a morphological family as the set of words obtained from
the same morphological root through derivation mechanisms. It is expected that
a basic semantic relationship will remain between the words of a given fam-
ily, relations of the type process-result, e.g. producción (production) / producto

(product), process-agent, e.g. manipulación (manipulation) / manipulador (ma-
nipulator), etc. In Spanish, the basic derivational mechanisms are: prefixation,
preposing morphemes to the base; emotive suffixation, postposing morphemes
that alter the base in some sort of subjective emotional way; non-emotive suffixa-

tion, postposing morphemes that change the meaning of the base fundamentally
rather than marginally, often effecting a change of syntactic category; back for-

mation, a morphological procedure to derive nouns from verbs by truncation; and
parasynthesis, the simultaneous prefixation and suffixation of the base lexeme.

Many derivational morphemes have variable forms (allomorphs), some-
times phonologically determined, and others lexically imposed by convention
or etymology. It must also be taken into account that morphological operations
can also involve phonological alterations of the base [8].

Regular word formation patterns in Spanish can be obtained through
the ‘rules of word formation’ [8] defined by generative phonology and
transformational-generative grammars. Though this paradigm is not complete, it
has been used to implement an automatic system for generation of morphological
families with an acceptable degree of completeness and correction [11].



Given two words w and w′ in the lexicon, we denote by w . w′ the fact that
w′ is obtained from w by means of some of the derivational mechanisms shown
above. Given this, we compute the morphological family of w as its reflexive and
transitive closure through derivation, denoted closure(w) and defined recursively
as:

– w ∈ closure(w).

– If w . w′ then w′ ∈ closure(w).

– If w′ . w then w′ ∈ closure(w).

The set of morphological families associated with a given lexicon is obtained
by means of applying closure(w) to each word w in the lexicon.

In order to use morphological families for document conflation, once we have
obtained the part of speech and the lemmas of the text to be indexed, we replace
each of the lemmas obtained by a fixed representative of its morphological family,
which is indexed [11]. In this way we are using the same index term to repre-
sent all words belonging to the same morphological family; therefore, semantic
relations that exist between these words remain in the index because related
terms are conflated to the same index term. With regard to computational cost,
morphological families and their representatives are computed a priori, so they
do not affect the final indexing and querying cost.

5 The Shallow Parser

Given a stream of tagged words, the parser module tries to obtain the head-

modifier pairs corresponding to the most relevant syntactic dependencies:noun-

modifier, relating the head of a noun phrase with the head of a modifier; subject-

verb, relating the head of the subject with the main verb of the clause; and verb-

complement, relating the main verb of the clause with the head of a complement.

It has to be noted that while the head-modifier relation may suggest semantic
dependence, what we obtain here is strictly syntactic, even though the semantic
relation is what we are really after.

The kernel of the grammar used by the parser is inferred from the basic
trees corresponding to noun phrases and their syntactic and morpho-syntactic
variants [6, 10]:

Syntactic variants result from the inflection of individual words and from
modifying the syntactic structure of the original noun phrase. Given a noun
phrase, their syntactic variants are obtained by means of:

– synapsy, changing a preposition or adding or removing a determiner;

– substitution, employing modifiers to make a term more specific;

– permutation of words around a pivot element;

– employing coordinating constructions (copulative or disjunctive) with
the modifier or with the modified term.
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Fig. 3. Experimental results on a corpus of newspaper articles

Morpho-syntactic variants differ from syntactic variants in that at least one
of the content words of the original noun phrase is transformed into another
word derived from the same morphological stem. They can be classified ac-
cording to the nature of the morphological transformations applied to their
words:

– Iso-categorial: morphological derivation process does not change the cat-
egory of words, but only transforms one noun syntagma into another.
There are two possibilities: noun-to-noun and adjective-to-adjective.

– Hetero-categorial: morphological derivation does result in a change of
the category of a word. There are also two possibilities: noun-to-verb
and noun-to-adjective.

We must remark that syntactic variants involve inflectional morphology but
not derivational morphology, whereas morpho-syntactic variants involve both
inflectional and derivational morphology. In addition, syntactic variants have a
very restricted scope (the noun phrase) whereas morpho-syntactic variants can
span a whole sentence, including a verb and its complements.

Once the basic trees of noun phrases and their variants have been estab-
lished, they are compiled into a set of regular expressions, which are matched
against the tagged texts in order to extract the dependency pairs, which are used
as index terms, as is described in [10]. In this way, we can identify dependency
pairs through simple pattern matching over the output of the tagger/lemmatizer,
dealing with the problem by means of finite-state techniques, leading to a con-
siderable reduction of the running cost.



6 Evaluation

The lack of a standard evaluation corpus has been a great handicap for the
development of IR research in Spanish.1 This situation is changing due to the
incorporation in CLEF-20012 of a Spanish corpus (composed of news provided by
a Spanish news agency) which is expected to become a standard. The techniques
proposed in this paper have been integrated recently, therefore, we could not
participate in CLEF-2001 edition, but we are prepared to join competition in
2002. Due to the unavailability of the CLEF corpus, we have chosen to test our
techniques over the corpus used in [12], formed by 21,899 newspaper articles
(national, international, economy, culture,. . . ) with an average length of 447
words. We have considered a set of 14 natural language queries with an average
length of 7.85 words per query, 4.36 of which were content words.

The techniques proposed in this article are independent of the indexing en-
gine we choose to use. This is because we first conflate the document to obtain its
index terms; then, the engine receives the conflated version of the document as
input. So, any standard text indexing engine may be employed, which is a great
advantage. Nevertheless, each engine will behave according to its own character-
istics (indexing model, ranking algorithm, etc.). We have compared the results
obtained, using SMART with the ltc-lnc weighting scheme as indexing engine,
by four different indexing methods: stemmed text after eliminating stopwords
(stm), lemmatized text (lem), text conflated by means of morphological families
(fam) and syntactic dependency pairs (sdp). Results are shown in Fig. 3. We can
observe that lem and fam slightly improve the precision of stm, with fam also
improving recall. With respect to sdp, we must remark it shows an improvement
in precision of 34.5% with respect to stm.

7 Conclusion

In this article we have proposed a set of practical natural language techniques
to improve the performance of text indexing when applied to Spanish texts.
These techniques include an advanced tokenizer for the right segmentation of
texts which accounts for a number of complex linguistic phenomena, a part-of-
speech tagger based on a stochastic model that can manage ambiguous streams of
words and integrate external dictionaries, a system for identifying words related
by derivational morphology, and a parser to extract head-modifier pairs. All of
them are built on finite-state technology, so they are very efficient and can be
applied to tasks in which huge amounts of text need to be analyzed, as is the case
of information retrieval. Albeit our scheme is oriented towards the indexing of
Spanish texts, it is also a proposal of a general architecture that can be applied
to other languages with very slight modifications.

1 The test collection used in the Spanish track of TREC-4 (1995) and TREC-5 (1996),
formed by news articles written in Mexican-Spanish, is no longer freely available.

2 http://www.clef-campaign.org
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noloǵıa (HP2001-0044) and Xunta de Galicia (PGIDT01PXI10506PN).

References
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tion for part-of-speech tagging. In Alexander Gelbukh, editor, Computational Lin-
guistics and Intelligent Text Processing, volume 2276 of Lecture Notes in Computer
Science, pages 240–249. Springer-Verlag, Berlin-Heidelberg-New York, 2002.

5. Jorge Graña, Jean-Cédric Chappelier, and Manuel Vilares. Integrating exter-
nal dictionaries into stochastic part-of-speech taggers. In Galia Angelova, Kalina
Bontcheva, Ruslan Mitkov, Nicolas Nocolov and Nokolai Nikolov, editors, Euro-
Conference Recent Advances in Natural Language Processing. Proceedings, pages
122–128, Tzigov Chark, Bulgaria, 2001.

6. Christian Jacquemin and Evelyne Tzoukermann. NLP for term variant extraction:
synergy between morphology, lexicon and syntax. In Tomek Strzalkowski, editor,
Natural Language Information Retrieval, volume 7 of Text, Speech and Language
Technology, pages 25–74. Kluwer Academic Publishers, Dordrecht/Boston/London,
1999.

7. Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, Cam-
bridge, MA, 1998.

8. Mervyn F. Lang. Spanish Word Formation: Productive Derivational Morphology
in the Modern Lexis. Croom Helm. Routledge, London and New York, 1990.

9. Christer Samuelsson. Morphological tagging based entirely on bayesian inference.
In Robert Eklund, editor, Proceedings of the 9th Nordic Conference on Computa-
tional Linguistics, Stockholm, Sweden, 1993.
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