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Abstract. This paper describes a new technique for the direct trans-
lation of character n-grams for use in Cross-Language Information Re-
trieval systems. This solution avoids the need for word normalization dur-
ing indexing or translation, and it can also deal with out-of-vocabulary
words. This knowledge-light approach does not rely on language-specific
processing, and it can be used with languages of very different natures
even when linguistic information and resources are scarce or unavailable.
Our proposal also tries to achieve a higher speed during the n-gram
alignment process with respect to previous approaches.
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1 Introduction

The interest in using character n-grams for text conflation in Information Re-
trieval (IR) comes from the possibilities they offer, particularly in the case of
non-English languages [6, 7]. Since it provides a surrogate means to normalize
word forms and it does not rely on language-specific processing, it can be applied
to very different languages, even when linguistic information and resources are
scarce or unavailable.

Its use is quite simple, since both queries and documents are just tokenized
into their compounding overlapping n-grams instead of words: the word potato,
for example, is split into: -pot-, -ota-, -tat- and -ato-. The resulting n-grams
are then processed by the retrieval engine.

Nevertheless, when extending its use to Cross-Language Information Re-
trieval (CLIR), an extra translation phase is needed. A simple solution consists
of, firstly, using any of the standard machine translation methods used in CLIR
for translating the query and, next, splitting the resulting query into n-grams [6].



Our approach is based on the previous work of the Johns Hopkins University
Applied Physics Lab (JHU/APL), which went one step further and proposed a
direct n-gram translation algorithm which allowed translation not at the word
level but at the n-gram level [7]. This solution avoids some of the limitations
of classic dictionary-based translation methods, such as the need for word nor-
malization or the inability to handle out-of-vocabulary words. Nevertheless, the
initial proposal resulted to be very slow. For example, it could take several days
in the case of working with 5-grams.

This paper describes a new proposal for direct n-gram translation we have
developed and which tries to speed up the process in order to make the testing of
new developments easier. The article is structured as follows. Firstly, Sect. 2 de-
scribes our system. Next, Sect. 3 evaluates our approach. Finally, Sect. 4 presents
our conclusions and future work.

2 The Character N -Gram Alignment Algorithm

In contrast with the original system developed by JHU/APL, which relies mainly
on ad-hoc resources, our system has been built using freely available resources
when possible in order to minimize effort and to make it more transparent. This
way, our system employes the open-source retrieval platform Terrier [1]. This
decision was supported by the satisfactory results obtained with n-grams using
different indexing engines [11]. The well-known Europarl parallel corpus [3] is
also used. This corpus was extracted from the proceedings of the European Par-
liament, containing up to 28 million words per language. It includes versions in 11
European languages: Romance (French, Italian, Spanish, Portuguese), Germanic
(English, Dutch, German, Danish, Swedish), Greek and Finnish.

Our n-gram alignment algorithm consists of two phases. In the first phase,
the slowest one, the input parallel corpus is aligned at the word-level using
the well-known statistical tool GIZA++ [9], obtaining as output the translation
probabilities between the different source and target language words. Next, in
the second phase, n-gram translation scores are computed employing statistical
association measures [5]. Our approach increases the speed of the process by
concentrating most of the complexity in the word-level alignment phase. This
first step acts as a filter, since only those n-gram pairs corresponding to aligned
words will be considered, whereas in the original JHU/APL approach all n-gram
pairs corresponding to aligned paragraphs were considered.

2.1 Word-Level Alignment Using Association Measures

Our n-gram alignment algorithm is an extension of the way association measures
can be used for creating bilingual word dictionaries taking as input parallel
collections aligned at the paragraph level [12]. In this context, given a word pair
(words, wordt) —words standing for the source language word, and wordt for
its candidate target language translation—, their cooccurrence frequency can
be organized in a contingency table resulting from a cross-classification of their
cooccurrences in the aligned corpus:



T = wordt T 6= wordt

S = words O11 O12 = R1

S 6= words O21 O22 = R2

= C1 = C2 = N

As shown, the first row accounts for those instances where the source language
paragraph contains words, while the first column accounts for those instances
where the target language paragraph contains wordt. The cell counts are called
the observed frequencies: O11, for example, stands for the number of aligned
paragraphs where the source language paragraph contains words and the target
language paragraph contains wordt. The total number of word pairs considered
—or sample size N— is the sum of the observed frequencies. The row totals, R1

and R2, and the column totals, C1 and C2, are also called marginal frequencies,
and O11 is called the joint frequency.

Once the contingency table has been built, different association measures can
be easily calculated for each word pair. The most promising pairs, those with
the highest association measures, are stored in the bilingual dictionary.

2.2 Adaptations for N-Gram-Level Alignment

We have described how to compute and use association measures for generating
bilingual word dictionaries from parallel corpora. However, our context is differ-
ent, since we do not have aligned paragraphs composed of words, but aligned
words —previously aligned through GIZA++— composed of n-grams. A first
choice could be just to adapt the contingency table to this context, by considering
that we are managing n-gram pairs (n-grams, n-gramt) cooccurring in aligned
words instead of word pairs (words, wordt) cooccurring in aligned paragraphs.
So, contingency tables should be adapted accordingly: O11, for example, should
be re-formulated as the number of aligned word pairs where the source language
word contains n-grams and the target language word contains n-gramt.

This solution seems logical, but is not completely accurate. In the case of
aligned paragraphs, we had real instances of word cooccurrences at the para-
graphs aligned. However, now we do not have real instances of n-gram cooccur-
rences at aligned words, but just probable ones, since GIZA++ uses a statistical
alignment model which computes a translation probability for each cooccurring
word pair [9]. So, the same word may be aligned with several translation can-
didates, each one with a given probability. Taking as example the case of the
English words milk and milky, and the Spanish words leche (milk), lechoso
(milky) and tomate (tomato), a possible output word-level alignment would be:

source word candidate translation probability

milk leche 0.98

milky lechoso 0.92

milk tomate 0.15

This way, it may be considered that the source 4-gram -milk- does not really
cooccur with the target 4-gram -lech-, since the alignment between its contain-
ing words milk and leche, and milky and lechoso is not certain. Nevertheless,



it seems much more probable that the ”translation” of -milk- is -lech- rather
than -toma-, since the probability of the alignment of their containing words
—milk and tomate— is much smaller than that of the words containing -milk-

and -lech- —the pairs milk and leche and milky and lechoso. Taking this
idea as a basis, our proposal consists of weighting the likelihood of a cooccurrence
according to the probability of its containing alignments.

So, the resulting contingency tables corresponding to the n-gram pairs
(-milk-, -lech-) and (-milk-, -toma-) are as follows:

T = -lech- T 6= -lech-

S = -milk- O11 = 0.98 + 0.92 =1.90 O12 = 0.98 + 3 ∗ 0.92 + 3 ∗ 0.15 =4.19 R1 =6.09

S 6= -milk- O21 =0.92 O22 = 3 ∗ 0.92 =2.76 R2 =3.68

C1 =2.82 C2 =6.95 N =9.77

T = -toma- T 6= -toma-

S = -milk- O11 =0.15 O12 = 2 ∗ 0.98 + 4 ∗ 0.92 + 2 ∗ 0.15 =5.94 R1 =6.09

S 6= -milk- O21 =0 O22 = 4 ∗ 0.92 =3.68 R2 =3.68

C1 =0.15 C2 =9.62 N =9.77

Notice that, for example, the O11 frequency corresponding to (-milk-, -lech-)
is not 2 as might be expected, but 1.90. This is because the pair appears in two
alignments, milk with leche and milky with lechoso, but each cooccurrence
in an alignment has been weighted according to its translation probability:

O11 = 0.98 (for milk with leche) + 0.92 (for milky with lechoso) = 1.90 .

Once the contingency tables have been generated, the association measures can
be computed. Our system employes two classic measures: the Dice coefficient
(Dice) and mutual information (MI ), defined by the following equations [5]:

Dice(n-grams, n-gramt) =
2O11

R1 + C1

. (1) MI(n-grams, n-gramt) = log
NO11

R1C1

. (2)

If using the Dice coefficient, for example, we find that the association measure
of the pair (-milk-, -lech-) —the correct one— is much higher than that of
the pair (-milk-, -toma-) —the wrong one:

Dice(-milk-, -lech-)= 2∗1.90

6.09+2.82
= 0.43 . Dice(-milk-, -toma-)= 2∗0.15

6.09+0.15
= 0.05 .

3 Evaluation

Before trying with less well-known languages with a greater lack of resources
—which are the aim of this approach—, our system has to be tuned and stud-
ied more in depth. For this purpose, our approach has been initially tested in
English-to-Spanish bilingual runs using the English topics and the Spanish doc-
ument collections of the CLEF 2006 robust task [8]. The Spanish data collection
is formed by 454,045 news reports (1.06 GB), while the test set consists of the



60 topics (C050–C059, C070–C079, C100–C109, C120–C129, C150–159, C180–189) of
the training topics subset established for that task. Topics are formed by three
fields: a brief title statement, a one-sentence description, and a more complex
narrative specifying the relevance assessment criteria. Nevertheless, only title
and description fields have been used, simulating in this way the case of ”short”
queries as those used in commercial engines [8].

Regarding the indexing process, documents were lowercased and punctuation
marks —but not diacritics— were removed. Finally, the texts were split into
n-grams and indexed, using 4-grams as a compromise n-gram size after study-
ing the previous results of the JHU/APL group [7]. The open-source Terrier

platform [1] has been employed as the retrieval engine, using a InL24 ranking
model [2]. No stopword removal or query expansion were applied at this point.

For querying, the source language topic is firstly split into n-grams. Next,
these n-grams are replaced by their candidate translations according to a se-
lection algorithm, and the resulting translated topics are then submitted to the
retrieval system. Two selection algorithms are currently available: a top-rank-
based algorithm, that takes the N highest ranked n-gram alignments according
to their association measure, and a threshold-based algorithm, that takes those
alignments whose association measure is greater or equal than a threshold T .

Next, we present the results obtained with the association measures currently
implemented in our system: the Dice coefficient and mutual information.5

3.1 Results Using the Dice Coefficient

Results Using Unidirectional Word-Level Alignment. Our first tests with
the Dice coefficient used the top-rank-based selection algorithm, that is, by tak-
ing the target n-grams from the N top n-gram-level alignments with the high-
est association measures.6 The best results were obtained when using a limited
number of translations, those with N=1 being the best ones. Such results are
displayed in the left-hand Precision vs. Recall graph of Fig. 1, labeled as ’W=0.00
N=1’ —notice that mean average precision (MAP) values are also given.

The next tests used the threshold-based selection algorithm, that is, by fixing
a minimal association measure threshold T .7 The best run, using T=0.30, is
shown in the left-hand graph of Fig. 1 labeled as ’W=0.00 T=0.30’. As can be
seen, the results obtained were significantly less good as the previous ones.8

Next, trying to reduce the noise introduced in the system by word-level trans-
lation ambiguities and, in this way, to improve the n-gram alignment, we removed
from the input those least-probable word alignments. After studying the distri-
bution of the input aligned word pairs across their translation probabilities, we

4 Inverse Document Frequency model with Laplace after-effect and normalization 2.
5 These experiments must be considered as unofficial experiments, since the results

obtained have not been checked by the CLEF organization.
6 With N ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50, 75, 100}.
7 With T ∈ {0.00, 0.001, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00}.
8 Two-tailed T-tests over MAPs with α=0.05 have been used along this work.



Table 1. General distribution of input aligned word pairs across their translation
probabilities.

unidir. alignment bidir. alignment

W=0.00 W=0.15 W=0.00 W=0.15

#pairs 2,155,482 66,610 672,502 32,011

µ 0.0233 0.2936 0.0287 0.3489

σ 0.0644 0.1845 0.0887 0.2116

Table 2. General distribution of output aligned n-gram pairs across their association
measures: the Dice coefficient and mutual information

unidir. alignment bidir. alignment

W=0.00 W=0.15 W=0.00 W=0.15

#pairs 18,463,772 1,166,930 6,828,044 600,120

Dice
µ 0.0036 0.0644 0.0133 0.1439

σ 0.0261 0.1355 0.0721 0.2252

MI
µ -0.6672 4.3056 -0.1476 5.2094

σ 3.8994 2.3019 4.0581 2.4206

decided to dismiss those pairs with a probability less than a threshold W=0.15.
This way we reduced the number of input pairs processed by 97%, from 2,155,482
to 66,610 —see Table 1—, and by 94% the number of output n-gram pairs gener-
ated, from 18,463,772 to 1,166,930 —see Table 2. This resulted in a considerable
reduction of processing and storage resources, processing time included.

On the other hand, according to Tables 1 and 3, the level of ambiguity was
reduced in both the input and output. In the case of the input, the mean number
of possible translations per source word in the input word-level alignment was
reduced from 41.1477 translations per source word with a mean probability of
0.0233, to 2.0049 translations with a mean probability of 0.2936. This implies a

Table 3. General distribution of source-language terms across their number of possible
translations: in the input aligned word pairs (left), and in the output aligned n-gram
pairs (right).

input aligned word pairs output aligned n-gram pairs

unidir. alignment bidir. alignment unidir. alignment bidir. alignment

W=0.00 W=0.15 W=0.00 W=0.15 W=0.00 W=0.15 W=0.00 W=0.15

#terms 52,384 33,223 48,935 28,238 35,728 30,880 33,818 27,932

µ 41.1477 2.0049 13.7427 1.1336 516.7871 37.7892 201.9056 21.4850

σ 76.1284 1.4717 43.1740 0.3858 949.8868 82.6615 502.7873 50.0478
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Fig. 1. Precision vs. Recall graphs of the test runs performed using the Dice coefficient
and taking as input a unidirectional (left) or bidirectional (right) word-level alignment.

reduction of 95% in the number of possible translations and a parallel increase
of 1160% in their mean translation probability.

In the case of the output, according to Tables 2 and 3, the mean number of
possible translations per source n-gram in the output was reduced from 516.7871
translations with a mean association measure of 0.0036, to 37.7892 translations
with a mean measure of 0.0644. This implies a reduction of 93% in the number
of translations and a increase of 1689% in their association measure.

The results obtained introducing this refinement are no significantly differ-
ent, in general, from those obtained without pruning, whatever the selection
algorithm used. Those best results obtained for each selection approach —with
N=1 and T=0.10— are shown in the left-hand graph of Fig. 1. As can be seen,
the top-rank-based selection algorithm keeps performing significantly better.

So, we can conclude that although this refinement does not really improve the
results, it reduces considerably those computing and storage resources required
by the system, justifying its application. On the other hand, the system showed to
be robust against the noise introduced by the high percentage of low-probability
alignments of the input.

Results Using Bidirectional Word-Level Alignment. Once more, we tried
to reduce the noise introduced in the system, this time by refining the initial
word-level alignment by using a bidirectional alignment [4]. That is, we consid-
ered a (wordEnglish, wordSpanish) English-to-Spanish alignment only if there also
existed a corresponding (wordSpanish, wordEnglish) Spanish-to-English align-
ment. This way we focus the processing on those words whose translation seems
less ambiguous. The best results obtained for this approach are presented in the
right-hand graph of Fig. 1. We will discuss now the impact of this refinement,
taking as the baseline those runs obtained using a unidirectional algorithm where
no minimal word-level translation probability threshold was fixed —i.e., W=0.

By examining Table 1 we can see that the bidirectional alignment reduced
the number of input word pairs by 69% —from 2,155,482 to 672,502 pairs—
and, according to Table 2, it reduced the number of output n-gram pairs by 63%



—from 18,463,772 to 6,828,044 pairs. This reductions allows us to reduce both
computing and storage resources —including processing time.

Regarding the level of ambiguity, in the case of the input, Tables 1 and 3
show a reduction from 41.1477 translations per input source word with a mean
probability of 0.0233, to 13.7427 translations with a probability of 0.0287. This
means a reduction of 67% in the number of translations and a increase of 23% in
the translation probability of the input. In the case of the output, Tables 2 and 3
show a reduction from a mean of 516.7871 translations per source n-gram with
a mean association measure of 0.0036, to 201.9056 translations with a measure
of 0.0133; a reduction of 61% and a increment of 269%, respectively.

With respect to the results, the best ones, obtained again with N=1 and
T=0.30, are shown in the right-hand graph of Fig. 1, being not significantly
different from those obtained with the original unidirectional alignment, with
the top-rank-based selection algorithm performing significantly better than the
threshold-based approach. So, we can conclude that the use of bilingual align-
ment does not damage the performance of the system, and also reduces com-
puting and storage resources —including processing time. The system was also
demonstrated to be robust against inaccurate or ambiguous input alignments.

We have also considered combining the word-level bilingual alignment with
the use of the word-level translation probability threshold W , looking for an
extra reduction of both the level of ambiguity and the computing and storage
resources needed. Taking as the baseline the results obtained when applying
such a probability threshold W=0.15 over the original unidirectional alignment,
Table 1 shows an extra 52% reduction —from 66,610 to 32,011 pairs— in the
number of input word alignments, and an extra 49% reduction —from 1,166,930
to 600,120 pairs— in the output n-gram alignments.

With respect to the level of ambiguity, there is an extra 43% reduction —
from 2.0049 to 1.1336 pairs— in the mean number of input word translations,
with an 19% increment —from 0.2936 to 0.3489— of the mean word translation
probability. In the case of the output n-gram translations, their mean number of
translations was reduced from 37.7892 to 21.4850 pairs (43%), with a increase
of the mean association measure from 0.0644 to 0.1439 (123%).

The results obtained, shown in the right-hand graph of Fig. 1, continue being
not significantly different from the initial ones, with the top-rank-based selection
algorithm performing significantly better. On the other hand, they show no
apparent damage to the performance, allowing us to conclude that the combined
use of both refinements minimizes the resources required by the system without
harming its performance.

3.2 Results Using Mutual Information

Our second main set of experiments used mutual information (MI) as the asso-
ciation measure. The main difference with respect to the Dice coefficient is that
the Dice coefficient takes values within the range [0 .. 1], while MI can take any
value within (−∞ .. + ∞). Moreover, negative MI values correspond to pairs of



terms avoiding each other, while positive values point out cooccurring terms.
Finally, MI also tends to overestimate low-frequency data.

These features had to be taken into account in order to adapt our testing
methodology. In the case of the top-rank-based selection algorithm, we continued
taking the N top-ranked n-gram alignments, even if their MI value was negative.
However, in the case of the threshold-based algorithm, since the range of MI
values for each test run may vary considerably, the threshold values were fixed
according to the following formula in order to homogenize the tests:

Ti = µ + 0.5 i σ . (3)

where Ti represents the i-th threshold, with i ∈ N0, µ represents the mean of the
MI values obtained for the present configuration, and σ its standard deviation.
This way, the first threshold was fixed at T0 = µ, the following threshold at
T1 = µ + 0.5 σ, next at T1 = µ + σ, and so on, until reaching the highest
possible threshold without overpassing the maximal MI value for the present
configuration.

Results Using a Unidirectional Word-Level Alignment. This first test
run corresponds to a unidirectional alignment using the top-rank-based selection
algorithm with no word-level pruning —i.e., W=0.00. Results were not as good
as those obtained using the Dice coefficient. The best run, that one using N=30,
is presented in the left-hand graph of Fig. 2.

When introducing the word-level translation probability threshold W=0.15,
the gains were the same as with the Dice coefficient, except for the mean associ-
ation measure. This is because word-level gains —reduction of input word pairs
and increment of the mean translation probability— only depend on the value
of W , and are not affected by the association measure. At the n-gram level, the
reduction in the number of output n-gram pairs only depends on the input word
pairs —and, consequently, on W . Nevertheless, the mean association measures
will vary, since we are now using MI. Mean values are shown in Table 2, and we
can see how they increased from -0.6672 to +4.3056 (745%).

The results obtained were not significantly different from those obtained with
W=0.00. The best ones, those for N=20, are shown in the left-hand graph of
Fig. 2. As in the case of the Dice coefficient, the introduction of the threshold W

does not damage the performance of the system, but reduces the computing and
storage resources required. On the other hand, the system demonstrated again
its robustness against the distortion introduced by low-probability inputs.

When using the threshold-based algorithm, results were slightly better than
those with the top-rank-based algorithm —except at the lowest recall levels—,
although this difference was not significant. Results improved when raising the
threshold, but continued being not as good as those obtained with the Dice
coefficient. The results for the best run, with T = µ + 2.5 σ, are shown in the
left-hand graph of Fig. 2.

When pruning the input data by applying the word-level probability thresh-
old W=0.15, the results seemed to approach even more those obtained with the
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Fig. 2. Precision vs. Recall graphs of the test runs performed using mutual information
and taking as input a unidirectional (left) or bidirectional (right) word-level alignment.

top-rank-based algorithm. As before, no significant difference was found with
respect to the results obtained without pruning. In this case the best threshold
was T = µ + 0.5 σ, as shown in the left-hand graph of Fig. 2.

Results Using a Bidirectional Word-Level Alignment. Our last set of test
runs introduced again a word-level bidirectional alignment. The results obtained
when using the top-rank-based selection algorithm were not significantly different
from those obtained when employing a unidirectional alignment, whether we use
W=0.00 or W=0.15 —see right-hand graph of Fig. 2.

As before, the gains obtained with the word-level threshold W were the same
as with the Dice coefficient, except for the mean association measure. When
taking as the baseline the unidirectional run with W=0.15, Table 2 shows an
21% increment of the mean MI value, from 4.3056 to 5.2094.

In the case of using a threshold-based selection algorithm, the results ob-
tained were again not significantly different from those obtained with an unidi-
rectional alignment, as shown in the right-hand graph of Fig. 2.

So, we can conclude that, as with the Dice coefficient, the introduction of
a bidirectional alignment does not damage the performance of the system, but
reduces the resources required. On the other hand, the system showed again its
robustness against inaccurate or ambiguous input word alignments.

Finally, to complete this evaluation section, Fig. 3 shows the best results obtained
for each combination of association measure and word-level alignment approach,
with respect to several baselines: by querying the Spanish index with the English
topics split into 4-grams (EN 4-grams) —allowing us to measure the impact of
casual matches—, by querying the Spanish index using the stemmed Spanish
topics9 (ES stemming), and by querying the Spanish index using the Spanish

9 We have used the Snowball stemmer (http://snowball.tartarus.org), based on
Porter’s algorithm [10] and one of the most popular stemmers in IR research.
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topics split into 4-grams (ES 4-grams) —our ideal performance goal. As can
be seen, the Dice coefficient in combination with the top-rank-based selection
algorithm obtained the best results, performing significantly better than mutual
information.

Although we still need to improve our results in order to reach our ideal
performance goal, our current results are encouraging, since it must be taken into
account that these are our very first experiments, so the margin for improvement
is still great.

4 Conclusions and Future Work

This paper describes a system for character n-gram-level alignment in a parallel
corpus and its use for direct translation of character n-grams in Cross-Language
Information Retrieval. The algorithm proposed consists of two phases. In the
first phase, the slowest one, the input parallel corpus is statistically aligned at
word-level. In the second phase, n-gram association measures are computed —
currently, the Dice coefficient and mutual information—, taking as input the
translation probabilities calculated in the previous phase. This solution speeds
up the training process, concentrating most of the complexity in the word-level
alignment phase, making the testing of new association measures for n-gram
alignment easier. On the other hand, two algorithms for the selection of candidate
translations have been tested: a top-rank-based algorithm, which takes the N

highest ranked n-gram alignments; and a threshold-based algorithm which takes
those alignments according to a minimal threshold T .

Our experiments have shown that the Dice coefficient outperforms mutual
information. In the case of using the Dice coefficient, the top-rank-based selection
algorithm performs better. However, in the case of using mutual information,
there is no apparent difference between the two selection algorithms available.



The use of a bidirectional alignment during the input word-level alignment
and the introduction of a minimal word-level translation probability threshold
have allowed us to reduce drastically both the number of input word alignments
to be processed and the number of output n-gram alignments, but without dam-
aging the performance of the system. This way, we can reduce considerably the
computing and storage resources required, including processing time. Moreover,
these experiments have demonstrated the robustness of the system against noisy
or ambiguous input alignments.

With respect to our future work, new tests with other languages of different
characteristics are being prepared in order to complete the tune of the system. We
will also focus our effort on the development of new algorithms for the selection
of candidate translations, and the application of new association measures.
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