
26 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 27 more queue: www.acmqueue.com

Why systems need
knowledge to find what
you really want

26 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 27 more queue: www.acmqueue.com

Searching
vs.

Finding information and organizing it so that it can be
found are two key aspects of any company’s knowledge
management strategy. Nearly everyone is familiar with
the experience of searching with a Web search engine
and using a search interface to search a particular Web
site once you get there. (You may have even noticed that
the latter often doesn’t work as well as the former.) After
you have a list of hits, you typically spend a significant
amount of time following links, waiting for pages to
download, reading through a page to see if it has what
you want, deciding that it doesn’t, backing up to try
another link, deciding to try another way to phrase your
request, et cetera. Eventually you may find what you
want, or you may ultimately give up and decide that you
can’t find it. Why is this so difficult?

I have been asking myself this question since I was a
graduate student and took my first course in information
retrieval. I was appalled to discover what information
retrieval systems actually did. I expected them to under-
stand what I was asking for and to find documents that
were about that topic. What they did was count words
and push the numbers through an equation to compute
a ranking.

Finding

SearchFO
CU

S

WILLIAM A. WOODS,
SUN MICROSYSTEMS LABORATORIES

28 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 29 more queue: www.acmqueue.com

Since then, information retrieval researchers have
explored many techniques, but modern document
retrieval systems still tend to be blunt instruments,
retrieving many nonrelevant documents (errors in preci-
sion) and missing many relevant documents (errors in
recall). The user is left with a significant task of reading
or scanning the retrieved results to determine whether
they actually have the information sought and to figure
out whether and how to rephrase a request to see if any
relevant documents were missed.

This article describes what I have learned from years
of thinking about these problems and from a research
project at Sun Microsystems Laboratories that combines
the respective strengths of humans and computers in a
knowledge-based system to help people find information.

I have been trying to develop systems that come closer
to my original assumption, focusing on helping people
find specific information, not just documents. I’ve found
some interesting approaches, using
some linguistic and cognitive science
insights, several kinds of knowledge,
and some new algorithms. These
techniques require more computa-
tion than do traditional techniques,
but if a search engine can be made
more helpful by spending more time
being smarter, then a decrease in
the speed of the search engine can
be more than offset by the increased
speed of finding what you want.

One of the problems that makes
searching difficult is that people
often ask for information using
different terms from those used in
what they need to find. Researchers
have explored a variety of tech-
niques for addressing this problem,
some of which use various kinds of
knowledge. I have been trying to
understand what kinds of knowledge

are necessary to make connections between what you ask
for and what you want. I started studying this problem
by catching people in what I call an “information seeking
state” and writing down, in their own words, what they
said they were looking for. I then tried to capture what
they ultimately found and do a linguistic analysis of the
relationships between the request and the result. Two
important kinds of relationships were apparent: mor-
phological and semantic (about which I will say more
directly).

PROBLEM 1: MORPHOLOGICAL RELATIONSHIPS
Early in my career, I built a question-answering system for
the NASA Manned Spacecraft Center to answer questions
about the Apollo 11 moon rocks. In addition to answer-
ing English questions such as, “What is the average
concentration of silicon in high-alkali rocks?” (which it
did by understanding the structure of the question and
then computing the answer), this system included cross-
references to the articles from which its data had been
extracted and a key-phrase search capability for searching
those articles. The key-phrases were extracted from the
texts by an automatic extraction technology developed
by the Defense Documentation Center. One problem we
encountered was that there was an article indexed under
the phrase acid glass and another article indexed under
acidic glass, and the system had no idea that these phrases
and these articles had anything to do with each other.

The relationship between acid
and acidic is morphological (mor-
phology being the linguistic study
of how words are formed), because
the word acidic is derived from the
word acid by adding the suffix ic.
Information retrieval systems often
deal with morphological relation-
ships between terms by using a
technique called stemming, which
consists of removing recognized
suffixes from a word (perhaps
repeatedly) until you are left with
a residual, or stem. In this case,
removing ic from acidic results in
the stem acid.

The idea is to index documents
by the stems of the words they
contain and to search using only the
stems of the words in a query. Thus,
all of the words in both the docu-
ment and the query are reduced to a

Searching
vs.Finding

SearchFO
CU

S

Although the
stemming
technique is
elegant and has
a simple matching
criterion, it has
several problems.

28 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 29 more queue: www.acmqueue.com

standard form (the stem), which can be matched directly.
The user gets hits for all words that are morphologically
related to the query terms, while the system has a simple
matching criterion. In the previous example, the phrase
acidic glass would be standardized to the same stem as
acid glass, and both documents would be indexed under
the same phrase.
Limitations of Stemming. Although the stemming
technique is elegant and has a simple matching criterion,
it has several problems—one of which is that stemming
sometimes makes mistakes. It can reduce unrelated words
to the same stem, and it can fail to reduce related words
to a common stem. For example, computing reduces to
comput, which is different from the word compute, so
the stemmer treats the final e as if it were a suffix and
removes it from compute to get the common stem comput.
But sometimes, final e’s matter, as in cap versus cape, so
the stemmer has to decide whether to remove it or not.
Without knowledge of what words exist, a stemmer will
inevitably get some of these cases wrong. In one stemmer
that I tested, the words copper, cop, cope, and copulate all
reduced to the stem cop. Another one considered unca-
pable and uncapped to have the same stem uncap.

Most stemmers are heuristic efforts, falling short of a
full understanding of the morphology of the language.
For example, in the previous examples, copper could
not come from cope, since only a final letter would be

doubled, and uncapable could not come from uncap since
the final p would be obligatorily doubled before adding
able. Moreover, stemmers generally deal only with suf-
fixes, so the correct analysis of “un++capable” is not avail-
able. Dealing with prefixes, as well as suffixes, is much
more complicated and more prone to false analyses, since
it requires resolving choices about which affix is applied
first (e.g., un++capable versus uncap++able).

Even when correct, stemming loses information, elimi-
nating the user’s ability to discriminate among different
forms of a word. If acidic glass means something slightly
different from acid glass, the user is blocked from express-
ing this difference. A user who wants to ask about subjec-
tivity will be forced to deal with hits on subjects, subjected,
and subjection as well.
Lexicon-based Morphology. Robert Krovetz provides an
excellent discussion of stemming and argues the merits
of using a dictionary as an additional source of knowl-
edge.1 Krovetz implemented a modified stemmer that
used a machine-readable English dictionary to restore
proper endings to words and to stop removing suffixes
when it had produced a word that was in the dictionary.
He explored several variations on this idea and showed
that this method generally exceeded the performance
of a standard stemmer. His modified stemmers used a
commercial dictionary of 27,855 words and analyzed 106
suffixes.

I have also been work-
ing with a morphological
engine2 that analyzes pre-
fixes and suffixes, as well
as lexical compounds (such
as bitmap and replybuffer).
It uses a lexicon developed
for natural language pars-
ing, and it automatically
constructs new lexical
entries for unknown
words. These entries, like
those for known words,
capture and represent
information about a word,
such as its syntactic catego-
ries (noun, verb, adjective,
etc.), its morphological
structure, and its relation-
ships to other words. The
lexicon is used to handle
exceptions and to test
whether hypothesized

Word Morphology Analysis

caress (car + ess) female car

cashier (cashy + er) wealthier

lacerate (lace + rate) speed of needlework

marinate (marine + ate) make into a marine

phony (phone + y) always on the telephone

rehearse (re + hearse) put the coffin back in the van

daredevil (dared + evil) serious risk

copout (co + pout) sulking together

detergent (deter + gent) a discouraging gentleman

pigeon (pig + eon) the age of peccaries

infantry (infant + ry) childish behavior

pantry (pant + ry) heavy breathing

molestation (mole + station) depot for moles

contractor (con + tractor) prison vehicle

extractor (ex + tractor) former tractor

TABLE 1Fifteen reasons why you need to know
particular words (false morphological analyses
of ordinary words)

30 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 31 more queue: www.acmqueue.com

base forms satisfy syntactic (and sometimes semantic)
conditions for a rule to apply. The lexicon is also used
by parsing algorithms to analyze phrases and sentences,
and it is used as a source of semantic and morphological
relationships between words.

This morphology engine currently has 1,724 knowl-
edge-based rules that analyze 690 prefixes and 276
suffixes. Its rules capture many subtleties of English
morphology, including such basics as doubling final let-
ters and inserting final e’s, and it has heuristic criteria for
selecting preferred analyses of a word from the sometimes
many variations that would be linguistically possible.
An effective lexicon of more than 250,000 word forms is
automatically generated from a core of 40,000 entries by
applying the morphology engine to a list of known words
and several lists of proper names.

One reason that a dictionary of known words is
important is that without it, many ordinary words would
be incorrectly analyzed as being
morphologically derived from other
unrelated words. For example,
delegate does not mean to take the
legs off something (de+leg+ate), and
ratify does not mean to infest with
rodents (rat+ify). Table 1 illustrates
some of the more interesting cases
from among thousands of ordinary
words that could receive false mor-
phological analyses if the diction-
ary didn’t already know what they
meant.

PROBLEM 2: SEMANTIC
RELATIONSHIPS
Like morphological relationships,
semantic relationships may be neces-
sary to make a connection between
what you ask for and what you need.
Semantic relationships have to do
with how the meanings of words are

related. For example, a system would need to know the
semantic relationship between moon and lunar to retrieve
a document indexed under lunar rocks in response to a
request for moon rocks. Semantic relationships are often
addressed in information retrieval systems by means of
a synonym thesaurus. In a synonym thesaurus, words
are divided into “synonym sets,” each of which contains
words that have the same meaning. These synonym
sets can be used to expand a query by adding all of the
synonyms of the query terms, so documents that involve
those synonyms will also be found. For example, moon
and lunar could be placed in a synonym set so that
queries using the term moon would be expanded with the
term lunar, and vice versa.
Synonyms Are Not Enough. Attempts to expand
queries automatically using a synonym thesaurus often
fail to improve the effectiveness of retrieval systems and
frequently degrade results. Part of the problem is that few
true synonyms exist in English (or any other language),
and members of synonym sets in such thesauri often
differ significantly in meaning. For example, {automobile,
car, truck, bus, taxi, motor vehicle} might be grouped as
synonyms in such a thesaurus. If your query is for motor
vehicle, then expansion with this set could give useful
results, but if your query is for cars, you might not be
happy getting hits on trucks and buses. The problem is
that some of these terms are more general than others.
Choosing to treat such terms as synonyms amounts to

generalizing the query to a level of
abstraction where the differences
don’t matter. Unfortunately, no
level of generality is correct for all
information needs.
Generality and Subsumption. A
better system would be one that
captures and exploits generality
relationships, so that a user can ask
questions at whatever level of gener-
ality is desired. I have been explor-
ing the use of a kind of subsumption
technology3 to address this prob-
lem. The idea is that general terms
subsume specific ones, and terms
can be organized into a structured
conceptual taxonomy based on
these subsumption relationships.
Formally, a term subsumes itself,
any more specific terms, and any
true synonyms that it may have.
When searching, a term in a request

Searching
vs.Finding

SearchFO
CU

S

Unfortunately, no level
of generality is correct
for all information needs.

30 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 31 more queue: www.acmqueue.com

will match any term in a target that is subsumed by the
requested term. Thus, a request for motor vehicle would
retrieve all kinds of motor vehicles, whereas a request for
automobile would retrieve cars and taxis but not trucks and
buses. You can also treat root words as subsuming their
derived and inflected forms, so that car would subsume
cars. In this way, one can combine semantic and morpho-
logical relationships in a uniform, intuitive framework.
Conceptual Indexing. To explore the hypothesis that
subsumption technology could improve the effective-
ness of online search, I built a system to extract words
and phrases from text and automatically assimilate them
into a structured conceptual taxonomy organized by the
subsumption relationship. The resulting structure, which
I call a conceptual index, turned out to be an intui-
tive structure for people to browse, and it reveals many
interesting relationships between words and phrases that
occur in indexed material and in queries. For example,
when searching a business directory for automobile clean-
ing, it found a relationship to car washing, because it knew
from its lexicon that a car was a kind of automobile and
that washing was a kind of cleaning. It was able to infer
that each part of the phrase automobile cleaning subsumed
a corresponding part of the phrase car washing, and there-
fore the former concept subsumed the latter.
Viewing the Conceptual Taxonomy. I have noticed
that people normally ask questions at the level of general-
ity that they are interested in, without even thinking
about it. Hence, it is usually a bad idea to generalize a
user’s query automatically. Occasionally, however, some-
one will miss a generalization, and in such cases, being
able to see where a query term fits in the conceptual tax-
onomy can be highly useful. For example, when I asked
for brown fur in a collection of articles about animals, I
found only three subsumed phrases, but I saw that my
request had been classified under brown coat in the tax-
onomy. Figure 1 shows the highly relevant concepts that I
found by generalizing my request to brown coat. With-
out seeing the conceptual taxonomy, I might not have
thought of this generalization and would have missed a
lot of what I wanted.
Specific Passage Retrieval. Experimenting with con-
ceptual indexing, I observed that sometimes words in a
relevant passage of text are not related in a single phrase
that would be subsumed by the query. For example, the
brown coat query didn’t find an article containing the sen-
tence, “The coat is reddish brown,” because this sentence
doesn’t contain an explicit phrase that is subsumed by
brown coat. Sometimes the relevant information is spread
over several sentences.

(BROWN COAT)

 —k—(BRIGHT REDDISH BROWN COAT)

 —k—(BROWN BLACK COAT)

 —k—(BROWN COATS)

 —k—(FAWN COATS)

 —v—((FAWN) COATS)

 —k—(REDDISH BROWN UPPER COATS)

 —k—(BROWN FUR)

 —k—(GRAY BROWN FUR)

 —k—(RICH BROWN FUR)

 —k—(WHITE-SPOTTED BROWN FUR)

 —k—(BROWN HAIR)

 —k—(BROWN HAIRS)

 —k—(REDDISH BROWN GUARD HAIRS)

 —k—(BROWN WOOL)

 —k—(REDDISH BROWN WOOL)

 —k—(BROWNISH HAIR)

 —k—(REDDISH BROWN HAIR)

 —k—(REDDISH BROWN GUARD HAIRS)

 —k—(REDDISH BROWN WOOL)

 —k—(BROWN-GRAY COAT)

 —k—(BROWNISH COAT)

 —k—(BROWNISH HAIR)

 —k—(BROWNISH SUMMER COAT)

 —k—(COARSER BROWNISH COAT)

 —k—(DARK BROWNISH COAT)

 —k—(COAT OF BROWN)

 —k—(WOOLLY COAT OF REDDISH BROWN)

 —k—(TAWNY COAT)

FIG 1

Fragment of a Conceptual Taxonomy

32 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 33 more queue: www.acmqueue.com

To deal with such cases, I extended my system with an
ability to find passages where all (or almost all) of the ele-
ments of a request occurred near each other and nearly in
the same relationships. Information from the conceptual
taxonomy about where concepts occurred in documents
was used to determine where such passages existed, and
they were ranked by how nearly they approximated the
input request. This technique, which I called specific
passage retrieval, turned out to be especially effective for
helping people find information. Rather than merely
finding documents, it was able to find and display the
passages in the document that were most likely to con-
tain the information sought.

The specific-passage-retrieval algorithm ranks pas-
sages by a penalty score that it computes from a number
of factors expressing ways that a relevant passage can
differ from an input request. As the words in the pas-
sage get farther apart, the likelihood that they are related
in the desired way decreases, so a penalty is computed
that is proportional to the number of intervening words.
Similarly, if the words in the passage are in a different
order than those in the query, then a penalty is computed
proportional to the amount of word reordering present.
If a term in the passage is morphologically different from
the corresponding term in the query or is a semanti-
cally more specific term, then a small penalty is added to
induce a small preference for exact matches. If one of the
terms of the query has no match in a passage, then the
passage receives a significant penalty that can depend on
the kind of term that is missing.

I picked coefficients for these factors that seemed to
make sense and found that the resulting penalty-based
scores were highly discriminating, so that the most rel-
evant passages really did tend to get ranked first. After I
applied the system to dozens of different subject domains
with continued good results, I began to trust those initial
guesses more than I would have trusted values that were
tuned to a collection.

Figures 2 and 3 illustrate the advantages of the
specific-passage-retrieval algorithm over traditional

document-retrieval techniques. These figures show the
output from an advanced search engine developed by my
colleague, Stephen Green, a productized version of which
is now incorporated into Sun’s Portal and Web server
products. The collection consists of several gigabytes of
news articles. The engine supports multiple query opera-
tors and will apply a default operator when no operator is
specified. In figure 2, the default operator is a traditional
weighted Boolean AND operator. In figure 3, the default
operator is an implementation of our penalty-based pas-
sage-retrieval algorithm. In both cases, an adaptation of
our passage-retrieval algorithm is used to generate the
summary that is shown with each hit. This enables a user
quickly to determine when a hit is irrelevant and skip
over it in the list.

In the Boolean AND case, you can see that the query
black and white dog returns a document containing all of
the requested terms, but they are not related in a way that
has anything to do with black and white dogs. With the
passage operator, on the other hand, the first hit contains
an exact match of the phrase black and white dog and is
directly on point. The second hit, which is not relevant,
has a penalty because the term dogs is plural, separated
from the phrase black and white, and is out of order.

This pair of examples illustrates how strongly the
penalty-based ranking differentiates among near misses
and how the traditional approach is insensitive to the
relationship between the words. Both hits found by the

Searching
vs.Finding

SearchFO
CU

S

FIG 2

Input query: black and white dog

Weighted Boolean AND Query

32 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 33 more queue: www.acmqueue.com

passage operator would be in the list of hits from the AND
operator, but they are far down in the list and are not
visible in the top ten choices. This is because of the way
that the traditional approach assigns weights to terms in
computing its rankings.
Knowledge and Search. Historically, many attempts to
use natural language processing to improve information
retrieval have either made little difference or actually
made things worse. This has been observed for morpho-
logical and semantic expansion of queries and also for
part-of-speech disambiguation of words. A fundamental
problem is that techniques such as semantic expansion
that have the potential to improve recall (the proportion
of relevant documents that are retrieved) also tend to
reduce precision (the proportion of retrieved documents
that are relevant), and techniques aimed at improving
precision tend to reduce recall.

Significantly, in one of my group’s early experiments,
comparing the specific-passage-retrieval algorithm with
traditional document retrieval, we found that adding
semantic knowledge and doing morphological analyses
of unknown words with the penalty-based passage-
retrieval method improved results, whereas incorporating
some of the same information into the synonym thesau-
rus of a commercial search engine made things worse.
Semantic expansion from the synonym thesaurus found
a few additional relevant documents, but it found a
much larger number of irrelevant documents that pushed

good hits out of the top ten positions. The penalty-based
method, because of its more discriminating ranking,
seemed able to benefit from the additional recall without
losing precision.

For example, with semantic expansion and the PAS-
SAGE operator for the black and white dog query, the
system found the phrase black and white mongrel as the
second hit (because the lexicon knew that a mongrel is a
kind of dog). Doing the same thing with the AND operator
produced no relevant hits in the top ten choices. Several
experiments have now shown that with this passage-
retrieval method, adding knowledge improves results.4

A few researchers have explored passage-retrieval
methods in the past, but these were usually based on
segmenting the material into paragraphs or sentences
and then indexing and searching those passages as if
they were small documents. Unlike these earlier systems,
the specific-passage-retrieval method I have been explor-
ing identifies passages dynamically in response to input
queries. The size of a passage depends on the query and
the quality of the hit. Generally, for a given query, pas-
sages get longer and less relevant as you go down the list
of hits, and you can stop looking when the penalty gets
sufficiently high and the hit passages stop being relevant.
Strengths and Weaknesses of Different Methods.
Our first experiment comparing specific passage retrieval
with traditional document retrieval showed that the pas-
sage-retrieval algorithm, without any morphological or
semantic knowledge, was roughly comparable to a com-
mercial search engine in terms of the number of relevant
documents found in the top ten choices. Each method
found relevant documents that the other did not.

Intuitively, the penalty-based method found better
hits when the relationship among the terms in the query
was important or when some specific information within
the document was sought. The traditional technique
found more relevant documents when the mere occur-
rence of the query terms in the document was sufficient
and the topic of the document as a whole was at issue.
Both techniques have their uses, depending on the nature
of the information need.

We found that the penalty-based technique was good
for short queries and short targets such as document
titles, chapter headings, and section headings, where
traditional methods do poorly. Traditional word-counting
techniques typically require targets of at least paragraph
length to get traction and have been shown to work best
if they can get paragraph-size queries as well.

Superficially, specific passage retrieval resembles phrase
matching and proximity matching, but it subsumes both

FIG 3

Input query: black and white dog

Penalty-based PASSAGE Query

34 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 35 more queue: www.acmqueue.com

of these and does more. It’s as if the system automatically
asked your query in a variety of different ways—includ-
ing an exact phrase, reordered phrase, ordered proximity,
unordered proximity, generalization by dropping words,
substituting morphological variants, and substituting
semantically related terms. It automatically finds the
results of all of these, and ranks them so that the best
come first.

If you don’t have a passage-retrieval operator, then you
can use proximity and phrase operators to get some of
the same benefits, but with a less useful ranking and with
more thought and effort spent phrasing and rephrasing
your query. Often the passage operator finds useful hits
that would have been missed by using a more specific
operator. For example, using a phrase search for a name
like William Woods would avoid documents where these
two terms were not adjacent, but it would miss occur-
rences such as William A. Woods.

The passage operator also helps
with problems of word-sense ambi-
guity, since when the terms in a
passage are related in the text as they
are in the query, they are also more
likely to be used in the same sense.
For example, searching for bill woods
with a passage operator is more
likely to find bill as a name (rather
than an invoice) when the passage
has a low penalty (e.g., few or no
intervening words).
Searching the Web versus Search-
ing a Web Site. As I mentioned
earlier, searching a Web site often
doesn’t work as well as searching the
Web as a whole. There are several
reasons for this. For one thing, the
Web is so vast that almost every-
thing is out there, expressed in
almost every possible way, so your
request is more likely to find a direct

match. Almost any way of expressing a query will find
thousands of hits. For a Web search engine, the important
thing is to choose a small number of those hits to display
and to do the query processing as quickly and cheaply
as possible. Paraphrase support is not usually considered
important, and it takes extra time and effort.

On the other hand, when searching a Web site or a
corporate knowledge base, what you need to find may
be worded in a particular way, and morphological and
semantic paraphrase support may be necessary to find
it. For example, in an experimental version of our search
engine, indexing the Sun Labs Web site, the query clock-
less design retrieved passages involving asynchronous
design. The conceptual index revealed that only two
documents on the site mentioned clockless, and 142 men-
tioned asynchronous. If you were looking for this informa-
tion without benefit of paraphrase support, you might go
away without knowing that you had missed most of what
was there.

It would be possible, in principle, to apply the same
kinds of semantic and morphological expansions to the
entire Web, using the specific-passage-retrieval technique,
but that has not been my primary target. The Web is so
vast that it is difficult to predict what would happen with-
out trying it. There would probably be more issues with
word sense ambiguity, and a global conceptual taxonomy
would be awe inspiring. It would be an interesting chal-
lenge. Certainly the cost would be greater than for cur-

rent Web search engines and might
not fit their business models.

The specific-passage-retrieval
algorithm lends itself to applications
of large scale, because it allows a
collection to be subdivided and the
search to be distributed, with the
results easily collated (because the
penalty scores are independent of
collection statistics). In theory, this
could be used for a kind of feder-
ated Web search in which owners
of content could provide their own
indexing and search and could
update their indexes whenever
the content changed. This would
address a fundamental problem of
Web searching: the never-ending
task of repeatedly crawling the Web,
trying to keep the indexes current.

It is interesting to contemplate a
federation knit together by a span-

Searching
vs.Finding

SearchFO
CU

S

Searching a Web
site often doesn’t work
as well as searching the
Web as a whole.

34 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 35 more queue: www.acmqueue.com

ning network of systems (possibly a peer-to-peer network)
that distribute queries and collate the results. Some of the
members of the federation could be large content provid-
ers who index their own content, whereas others could
be crawler-based services like current Web search engines.
Of course, this would take a heretofore untold amount of
cooperation among many players that are currently fierce
competitors, making this scenario perhaps nothing more
than theoretical for the time being.
Further Challenges. Specific passage retrieval is a heuris-
tic technique that correlates fairly well with whether the
terms in a passage are related in the way that they are in
the query, without needing a more complex system that
would parse the query and the passage and understand
how all of the terms are syntactically related. It provides a
useful way for people to find answers to specific ques-
tions, but it relies on human judgment to recognize the
answers when it finds them. Much of my research with
this technique has focused on finding relevant passages
and displaying information to enable the human user to
make this judgment quickly.

Beyond finding passages that are likely to contain an
answer lies the challenge of understanding whether a
passage has an answer and what the answer is. Sometimes
this can require a considerable amount of knowledge-
based reasoning.

For example, if an article contains the sentence, “Sena-
tor Daniel Patrick Moynihan told his colleagues that he
wanted to make the longest word in the English language
by taking the term ‘floccinaucinihilipilification’ and add-
ing the suffix ‘-ism’,” then the specific-passage-retrieval
algorithm can find it in response to any of these queries:
longest word in the English language; longest word in English;
longest English word—or even What is the longest word in
the English language. It takes some significant reasoning,
however, to deduce from this sentence and its surround-
ing context that floccinaucinihilipilification is a possible
answer. (Incidentally, this word, reported as the longest
word in the first edition of the Oxford English Dictionary, is
used in the 1994 Patrick O’Brian novel, Master and Com-
mander, on which the recent movie was based.)

If you can understand whether a passage has an
answer and what the answer is, then a next step would
be to combine items of information from multiple
sources to deduce answers. For example, if another article
contains the sentence, “Since 1961, the longest word in
the unabridged Webster’s Third New International Diction-
ary has been ‘pneumonoultramicroscopicsilicovolcano-
coniosis’,” then you can conclude that this is a better
answer.

These tasks will require systems that can determine
what passages are saying and reason with the resulting
knowledge, and they will require additional sources of
knowledge and advancements in automated reasoning.
An active research area devoted to question-answering is
pursuing such goals. Q

REFERENCES
1. Krovetz, R. Viewing morphology as an inference

progress. Proceedings of the 16th Annual International
ACM-SIGIR Conference on Research and Development in
Information Retrieval (1993), 191202. (It also appears as
a UMass technical report TR-93-36.)

2. Woods, W. A. Aggressive morphology for robust lexical
coverage, Proceedings of ANLP-2000, Seattle, WA, May
1-3, 2000. (Preliminary version: Technical Report SMLI
TR-99-82, Sun Microsystems Laboratories, Mountain
View, CA, December 1999; http://www.sun.com/
research/techrep/1999/abstract-82.html.)

3. Woods, W. A. Understanding subsumption and tax-
onomy: a framework for progress. In Sowa, J. (Ed.),
Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge. Morgan Kaufmann, San Mateo:
CA, 1991, 45-94.

4. Woods, W. A., Bookman, L. A., Houston, A., Kuhns, R.
J., Martin, P., and Green, S. Linguistic knowledge can
improve information retrieval. Proceedings of ANLP-
2000, Seattle, WA, May 1-3, 2000;
http://research.sun.com/features/tenyears/volcd/
papers/woods.htm (final version with author’s intro-
duction).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

WILLIAM A. WOODS is a principal scientist and distin-
guished engineer at Sun Microsystems Laboratories in
Burlington, Massachusetts. He is internationally known
for his research in natural language processing, continu-
ous speech understanding, and knowledge representa-
tion, and he is currently interested in technology for
improving people’s access to information. He earned his
Ph.D. at Harvard University, where he then served as an
assistant professor and later as Gordon McKay Professor
of the Practice of Computer Science. He is a past presi-
dent of the Association for Computational Linguistics, a
Fellow of the American Association for Artificial Intel-
ligence, and a Fellow of the American Association for the
Advancement of Science.
© 2004 ACM 1542-7730/04/0400 $5.00

http://research.sun.com/features/tenyears/volcd/papers/woods.htm
http://research.sun.com/features/tenyears/volcd/papers/woods.htm
www.acmqueue.com/forums

