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Why systems need 
knowledge to find what 
you really want
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Searching 
vs.

Finding information and organizing it so that it can be 
found are two key aspects of any company’s knowledge 
management strategy. Nearly everyone is familiar with 
the experience of searching with a Web search engine 
and using a search interface to search a particular Web 
site once you get there. (You may have even noticed that 
the latter often doesn’t work as well as the former.) After 
you have a list of hits, you typically spend a significant 
amount of time following links, waiting for pages to 
download, reading through a page to see if it has what 
you want, deciding that it doesn’t, backing up to try 
another link, deciding to try another way to phrase your 
request, et cetera. Eventually you may find what you 
want, or you may ultimately give up and decide that you 
can’t find it. Why is this so difficult?

I have been asking myself this question since I was a 
graduate student and took my first course in information 
retrieval. I was appalled to discover what information 
retrieval systems actually did. I expected them to under-
stand what I was asking for and to find documents that 
were about that topic. What they did was count words 
and push the numbers through an equation to compute 
a ranking. 
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Since then, information retrieval researchers have 
explored many techniques, but modern document 
retrieval systems still tend to be blunt instruments, 
retrieving many nonrelevant documents (errors in preci-
sion) and missing many relevant documents (errors in 
recall). The user is left with a significant task of reading 
or scanning the retrieved results to determine whether 
they actually have the information sought and to figure 
out whether and how to rephrase a request to see if any 
relevant documents were missed.

This article describes what I have learned from years 
of thinking about these problems and from a research 
project at Sun Microsystems Laboratories that combines 
the respective strengths of humans and computers in a 
knowledge-based system to help people find information.

I have been trying to develop systems that come closer 
to my original assumption, focusing on helping people 
find specific information, not just documents. I’ve found 
some interesting approaches, using 
some linguistic and cognitive science 
insights, several kinds of knowledge, 
and some new algorithms. These 
techniques require more computa-
tion than do traditional techniques, 
but if a search engine can be made 
more helpful by spending more time 
being smarter, then a decrease in 
the speed of the search engine can 
be more than offset by the increased 
speed of finding what you want.

One of the problems that makes 
searching difficult is that people 
often ask for information using 
different terms from those used in 
what they need to find. Researchers 
have explored a variety of tech-
niques for addressing this problem, 
some of which use various kinds of 
knowledge. I have been trying to 
understand what kinds of knowledge 

are necessary to make connections between what you ask 
for and what you want. I started studying this problem 
by catching people in what I call an “information seeking 
state” and writing down, in their own words, what they 
said they were looking for. I then tried to capture what 
they ultimately found and do a linguistic analysis of the 
relationships between the request and the result. Two 
important kinds of relationships were apparent: mor-
phological and semantic (about which I will say more 
directly).

PROBLEM 1: MORPHOLOGICAL RELATIONSHIPS
Early in my career, I built a question-answering system for 
the NASA Manned Spacecraft Center to answer questions 
about the Apollo 11 moon rocks. In addition to answer-
ing English questions such as, “What is the average 
concentration of silicon in high-alkali rocks?” (which it 
did by understanding the structure of the question and 
then computing the answer), this system included cross-
references to the articles from which its data had been 
extracted and a key-phrase search capability for searching 
those articles. The key-phrases were extracted from the 
texts by an automatic extraction technology developed 
by the Defense Documentation Center. One problem we 
encountered was that there was an article indexed under 
the phrase acid glass and another article indexed under 
acidic glass, and the system had no idea that these phrases 
and these articles had anything to do with each other.

The relationship between acid 
and acidic is morphological (mor-
phology being the linguistic study 
of how words are formed), because 
the word acidic is derived from the 
word acid by adding the suffix ic. 
Information retrieval systems often 
deal with morphological relation-
ships between terms by using a 
technique called stemming, which 
consists of removing recognized 
suffixes from a word (perhaps 
repeatedly) until you are left with 
a residual, or stem. In this case, 
removing ic from acidic results in 
the stem acid. 

The idea is to index documents 
by the stems of the words they 
contain and to search using only the 
stems of the words in a query. Thus, 
all of the words in both the docu-
ment and the query are reduced to a 
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standard form (the stem), which can be matched directly. 
The user gets hits for all words that are morphologically 
related to the query terms, while the system has a simple 
matching criterion. In the previous example, the phrase 
acidic glass would be standardized to the same stem as 
acid glass, and both documents would be indexed under 
the same phrase.
Limitations of Stemming. Although the stemming 
technique is elegant and has a simple matching criterion, 
it has several problems—one of which is that stemming 
sometimes makes mistakes. It can reduce unrelated words 
to the same stem, and it can fail to reduce related words 
to a common stem. For example, computing reduces to 
comput, which is different from the word compute, so 
the stemmer treats the final e as if it were a suffix and 
removes it from compute to get the common stem comput. 
But sometimes, final e’s matter, as in cap versus cape, so 
the stemmer has to decide whether to remove it or not. 
Without knowledge of what words exist, a stemmer will 
inevitably get some of these cases wrong. In one stemmer 
that I tested, the words copper, cop, cope, and copulate all 
reduced to the stem cop. Another one considered unca-
pable and uncapped to have the same stem uncap.

Most stemmers are heuristic efforts, falling short of a 
full understanding of the morphology of the language. 
For example, in the previous examples, copper could 
not come from cope, since only a final letter would be 

doubled, and uncapable could not come from uncap since 
the final p would be obligatorily doubled before adding 
able. Moreover, stemmers generally deal only with suf-
fixes, so the correct analysis of “un++capable” is not avail-
able. Dealing with prefixes, as well as suffixes, is much 
more complicated and more prone to false analyses, since 
it requires resolving choices about which affix is applied 
first (e.g., un++capable versus uncap++able).

Even when correct, stemming loses information, elimi-
nating the user’s ability to discriminate among different 
forms of a word. If acidic glass means something slightly 
different from acid glass, the user is blocked from express-
ing this difference. A user who wants to ask about subjec-
tivity will be forced to deal with hits on subjects, subjected, 
and subjection as well.
Lexicon-based Morphology. Robert Krovetz provides an 
excellent discussion of stemming and argues the merits 
of using a dictionary as an additional source of knowl-
edge.1 Krovetz implemented a modified stemmer that 
used a machine-readable English dictionary to restore 
proper endings to words and to stop removing suffixes 
when it had produced a word that was in the dictionary. 
He explored several variations on this idea and showed 
that this method generally exceeded the performance 
of a standard stemmer. His modified stemmers used a 
commercial dictionary of 27,855 words and analyzed 106 
suffixes.

I have also been work-
ing with a morphological 
engine2 that analyzes pre-
fixes and suffixes, as well 
as lexical compounds (such 
as bitmap and replybuffer). 
It uses a lexicon developed 
for natural language pars-
ing, and it automatically 
constructs new lexical 
entries for unknown 
words. These entries, like 
those for known words, 
capture and represent 
information about a word, 
such as its syntactic catego-
ries (noun, verb, adjective, 
etc.), its morphological 
structure, and its relation-
ships to other words. The 
lexicon is used to handle 
exceptions and to test 
whether hypothesized 

Word Morphology Analysis

caress (car + ess) female car

cashier (cashy + er) wealthier

lacerate (lace + rate) speed of needlework

marinate (marine + ate) make into a marine

phony (phone + y) always on the telephone

rehearse (re + hearse) put the coffin back in the van

daredevil (dared + evil) serious risk

copout (co + pout) sulking together

detergent (deter + gent) a discouraging gentleman

pigeon (pig + eon) the age of peccaries

infantry (infant + ry) childish behavior

pantry (pant + ry) heavy breathing

molestation (mole + station) depot for moles

contractor (con + tractor) prison vehicle

extractor (ex + tractor) former tractor

TABLE 1Fifteen reasons why you need to know 
particular words (false morphological analyses 
of ordinary words)
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base forms satisfy syntactic (and sometimes semantic) 
conditions for a rule to apply. The lexicon is also used 
by parsing algorithms to analyze phrases and sentences, 
and it is used as a source of semantic and morphological 
relationships between words.

This morphology engine currently has 1,724 knowl-
edge-based rules that analyze 690 prefixes and 276 
suffixes. Its rules capture many subtleties of English 
morphology, including such basics as doubling final let-
ters and inserting final e’s, and it has heuristic criteria for 
selecting preferred analyses of a word from the sometimes 
many variations that would be linguistically possible. 
An effective lexicon of more than 250,000 word forms is 
automatically generated from a core of 40,000 entries by 
applying the morphology engine to a list of known words 
and several lists of proper names.

One reason that a dictionary of known words is 
important is that without it, many ordinary words would 
be incorrectly analyzed as being 
morphologically derived from other 
unrelated words. For example, 
delegate does not mean to take the 
legs off something (de+leg+ate), and 
ratify does not mean to infest with 
rodents (rat+ify). Table 1 illustrates 
some of the more interesting cases 
from among thousands of ordinary 
words that could receive false mor-
phological analyses if the diction-
ary didn’t already know what they 
meant.

PROBLEM 2: SEMANTIC 
RELATIONSHIPS
Like morphological relationships, 
semantic relationships may be neces-
sary to make a connection between 
what you ask for and what you need. 
Semantic relationships have to do 
with how the meanings of words are 

related. For example, a system would need to know the 
semantic relationship between moon and lunar to retrieve 
a document indexed under lunar rocks in response to a 
request for moon rocks. Semantic relationships are often 
addressed in information retrieval systems by means of 
a synonym thesaurus. In a synonym thesaurus, words 
are divided into “synonym sets,” each of which contains 
words that have the same meaning. These synonym 
sets can be used to expand a query by adding all of the 
synonyms of the query terms, so documents that involve 
those synonyms will also be found. For example, moon 
and lunar could be placed in a synonym set so that 
queries using the term moon would be expanded with the 
term lunar, and vice versa.
Synonyms Are Not Enough. Attempts to expand 
queries automatically using a synonym thesaurus often 
fail to improve the effectiveness of retrieval systems and 
frequently degrade results. Part of the problem is that few 
true synonyms exist in English (or any other language), 
and members of synonym sets in such thesauri often 
differ significantly in meaning. For example, {automobile, 
car, truck, bus, taxi, motor vehicle} might be grouped as 
synonyms in such a thesaurus. If your query is for motor 
vehicle, then expansion with this set could give useful 
results, but if your query is for cars, you might not be 
happy getting hits on trucks and buses. The problem is 
that some of these terms are more general than others. 
Choosing to treat such terms as synonyms amounts to 

generalizing the query to a level of 
abstraction where the differences 
don’t matter. Unfortunately, no 
level of generality is correct for all 
information needs.
Generality and Subsumption. A 
better system would be one that 
captures and exploits generality 
relationships, so that a user can ask 
questions at whatever level of gener-
ality is desired. I have been explor-
ing the use of a kind of subsumption 
technology3 to address this prob-
lem. The idea is that general terms 
subsume specific ones, and terms 
can be organized into a structured 
conceptual taxonomy based on 
these subsumption relationships. 
Formally, a term subsumes itself, 
any more specific terms, and any 
true synonyms that it may have. 
When searching, a term in a request 
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will match any term in a target that is subsumed by the 
requested term. Thus, a request for motor vehicle would 
retrieve all kinds of motor vehicles, whereas a request for 
automobile would retrieve cars and taxis but not trucks and 
buses. You can also treat root words as subsuming their 
derived and inflected forms, so that car would subsume 
cars. In this way, one can combine semantic and morpho-
logical relationships in a uniform, intuitive framework.
Conceptual Indexing. To explore the hypothesis that 
subsumption technology could improve the effective-
ness of online search, I built a system to extract words 
and phrases from text and automatically assimilate them 
into a structured conceptual taxonomy organized by the 
subsumption relationship. The resulting structure, which 
I call a conceptual index, turned out to be an intui-
tive structure for people to browse, and it reveals many 
interesting relationships between words and phrases that 
occur in indexed material and in queries. For example, 
when searching a business directory for automobile clean-
ing, it found a relationship to car washing, because it knew 
from its lexicon that a car was a kind of automobile and 
that washing was a kind of cleaning. It was able to infer 
that each part of the phrase automobile cleaning subsumed 
a corresponding part of the phrase car washing, and there-
fore the former concept subsumed the latter.
Viewing the Conceptual Taxonomy. I have noticed 
that people normally ask questions at the level of general-
ity that they are interested in, without even thinking 
about it. Hence, it is usually a bad idea to generalize a 
user’s query automatically. Occasionally, however, some-
one will miss a generalization, and in such cases, being 
able to see where a query term fits in the conceptual tax-
onomy can be highly useful. For example, when I asked 
for brown fur in a collection of articles about animals, I 
found only three subsumed phrases, but I saw that my 
request had been classified under brown coat in the tax-
onomy. Figure 1 shows the highly relevant concepts that I 
found by generalizing my request to brown coat. With-
out seeing the conceptual taxonomy, I might not have 
thought of this generalization and would have missed a 
lot of what I wanted.
Specific Passage Retrieval. Experimenting with con-
ceptual indexing, I observed that sometimes words in a 
relevant passage of text are not related in a single phrase 
that would be subsumed by the query. For example, the 
brown coat query didn’t find an article containing the sen-
tence, “The coat is reddish brown,” because this sentence 
doesn’t contain an explicit phrase that is subsumed by 
brown coat. Sometimes the relevant information is spread 
over several sentences.

(BROWN COAT)

       —k—(BRIGHT REDDISH BROWN COAT)

       —k—(BROWN BLACK COAT)

       —k—(BROWN COATS)

      —k—(FAWN COATS)

                  —v—((FAWN) COATS)

 

      —k—(REDDISH BROWN UPPER COATS)

   

       —k—(BROWN FUR)

      —k—(GRAY BROWN FUR)

      —k—(RICH BROWN FUR)

      —k—(WHITE-SPOTTED BROWN FUR)

   

       —k—(BROWN HAIR)

      —k—(BROWN HAIRS)

                   —k—(REDDISH BROWN GUARD HAIRS)

 

      —k—(BROWN WOOL)

                   —k—(REDDISH BROWN WOOL)

  

      —k—(BROWNISH HAIR)

      —k—(REDDISH BROWN HAIR)

                   —k—(REDDISH BROWN GUARD HAIRS)

                   —k—(REDDISH BROWN WOOL)

        

       —k—(BROWN-GRAY COAT)

       —k—(BROWNISH COAT)

                   —k—(BROWNISH HAIR)

      —k—(BROWNISH SUMMER COAT)

      —k—(COARSER BROWNISH COAT)

      —k—(DARK BROWNISH COAT)

   

       —k—(COAT OF BROWN)

      —k—(WOOLLY COAT OF REDDISH BROWN)

       —k—(TAWNY COAT)

FIG 1 

Fragment of a Conceptual Taxonomy
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To deal with such cases, I extended my system with an 
ability to find passages where all (or almost all) of the ele-
ments of a request occurred near each other and nearly in 
the same relationships. Information from the conceptual 
taxonomy about where concepts occurred in documents 
was used to determine where such passages existed, and 
they were ranked by how nearly they approximated the 
input request. This technique, which I called specific 
passage retrieval, turned out to be especially effective for 
helping people find information. Rather than merely 
finding documents, it was able to find and display the 
passages in the document that were most likely to con-
tain the information sought.

The specific-passage-retrieval algorithm ranks pas-
sages by a penalty score that it computes from a number 
of factors expressing ways that a relevant passage can 
differ from an input request. As the words in the pas-
sage get farther apart, the likelihood that they are related 
in the desired way decreases, so a penalty is computed 
that is proportional to the number of intervening words. 
Similarly, if the words in the passage are in a different 
order than those in the query, then a penalty is computed 
proportional to the amount of word reordering present. 
If a term in the passage is morphologically different from 
the corresponding term in the query or is a semanti-
cally more specific term, then a small penalty is added to 
induce a small preference for exact matches. If one of the 
terms of the query has no match in a passage, then the 
passage receives a significant penalty that can depend on 
the kind of term that is missing.

I picked coefficients for these factors that seemed to 
make sense and found that the resulting penalty-based 
scores were highly discriminating, so that the most rel-
evant passages really did tend to get ranked first. After I 
applied the system to dozens of different subject domains 
with continued good results, I began to trust those initial 
guesses more than I would have trusted values that were 
tuned to a collection.

Figures 2 and 3 illustrate the advantages of the 
specific-passage-retrieval algorithm over traditional 

document-retrieval techniques. These figures show the 
output from an advanced search engine developed by my 
colleague, Stephen Green, a productized version of which 
is now incorporated into Sun’s Portal and Web server 
products. The collection consists of several gigabytes of 
news articles. The engine supports multiple query opera-
tors and will apply a default operator when no operator is 
specified. In figure 2, the default operator is a traditional 
weighted Boolean AND operator. In figure 3, the default 
operator is an implementation of our penalty-based pas-
sage-retrieval algorithm. In both cases, an adaptation of 
our passage-retrieval algorithm is used to generate the 
summary that is shown with each hit. This enables a user 
quickly to determine when a hit is irrelevant and skip 
over it in the list. 

In the Boolean AND case, you can see that the query 
black and white dog returns a document containing all of 
the requested terms, but they are not related in a way that 
has anything to do with black and white dogs. With the 
passage operator, on the other hand, the first hit contains 
an exact match of the phrase black and white dog and is 
directly on point. The second hit, which is not relevant, 
has a penalty because the term dogs is plural, separated 
from the phrase black and white, and is out of order.

This pair of examples illustrates how strongly the 
penalty-based ranking differentiates among near misses 
and how the traditional approach is insensitive to the 
relationship between the words. Both hits found by the 
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Input query: black and white dog

Weighted Boolean AND Query
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passage operator would be in the list of hits from the AND 
operator, but they are far down in the list and are not 
visible in the top ten choices. This is because of the way 
that the traditional approach assigns weights to terms in 
computing its rankings. 
Knowledge and Search. Historically, many attempts to 
use natural language processing to improve information 
retrieval have either made little difference or actually 
made things worse. This has been observed for morpho-
logical and semantic expansion of queries and also for 
part-of-speech disambiguation of words. A fundamental 
problem is that techniques such as semantic expansion 
that have the potential to improve recall (the proportion 
of relevant documents that are retrieved) also tend to 
reduce precision (the proportion of retrieved documents 
that are relevant), and techniques aimed at improving 
precision tend to reduce recall.

Significantly, in one of my group’s early experiments, 
comparing the specific-passage-retrieval algorithm with 
traditional document retrieval, we found that adding 
semantic knowledge and doing morphological analyses 
of unknown words with the penalty-based passage-
retrieval method improved results, whereas incorporating 
some of the same information into the synonym thesau-
rus of a commercial search engine made things worse. 
Semantic expansion from the synonym thesaurus found 
a few additional relevant documents, but it found a 
much larger number of irrelevant documents that pushed 

good hits out of the top ten positions. The penalty-based 
method, because of its more discriminating ranking, 
seemed able to benefit from the additional recall without 
losing precision.

For example, with semantic expansion and the PAS-
SAGE operator for the black and white dog query, the 
system found the phrase black and white mongrel as the 
second hit (because the lexicon knew that a mongrel is a 
kind of dog). Doing the same thing with the AND operator 
produced no relevant hits in the top ten choices. Several 
experiments have now shown that with this passage-
retrieval method, adding knowledge improves results.4

A few researchers have explored passage-retrieval 
methods in the past, but these were usually based on 
segmenting the material into paragraphs or sentences 
and then indexing and searching those passages as if 
they were small documents. Unlike these earlier systems, 
the specific-passage-retrieval method I have been explor-
ing identifies passages dynamically in response to input 
queries. The size of a passage depends on the query and 
the quality of the hit. Generally, for a given query, pas-
sages get longer and less relevant as you go down the list 
of hits, and you can stop looking when the penalty gets 
sufficiently high and the hit passages stop being relevant.
Strengths and Weaknesses of Different Methods. 
Our first experiment comparing specific passage retrieval 
with traditional document retrieval showed that the pas-
sage-retrieval algorithm, without any morphological or 
semantic knowledge, was roughly comparable to a com-
mercial search engine in terms of the number of relevant 
documents found in the top ten choices. Each method 
found relevant documents that the other did not.

Intuitively, the penalty-based method found better 
hits when the relationship among the terms in the query 
was important or when some specific information within 
the document was sought. The traditional technique 
found more relevant documents when the mere occur-
rence of the query terms in the document was sufficient 
and the topic of the document as a whole was at issue. 
Both techniques have their uses, depending on the nature 
of the information need.

We found that the penalty-based technique was good 
for short queries and short targets such as document 
titles, chapter headings, and section headings, where 
traditional methods do poorly. Traditional word-counting 
techniques typically require targets of at least paragraph 
length to get traction and have been shown to work best 
if they can get paragraph-size queries as well.

Superficially, specific passage retrieval resembles phrase 
matching and proximity matching, but it subsumes both 

FIG 3 

Input query: black and white dog

Penalty-based PASSAGE Query
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of these and does more. It’s as if the system automatically 
asked your query in a variety of different ways—includ-
ing an exact phrase, reordered phrase, ordered proximity, 
unordered proximity, generalization by dropping words, 
substituting morphological variants, and substituting 
semantically related terms. It automatically finds the 
results of all of these, and ranks them so that the best 
come first.

If you don’t have a passage-retrieval operator, then you 
can use proximity and phrase operators to get some of 
the same benefits, but with a less useful ranking and with 
more thought and effort spent phrasing and rephrasing 
your query. Often the passage operator finds useful hits 
that would have been missed by using a more specific 
operator. For example, using a phrase search for a name 
like William Woods would avoid documents where these 
two terms were not adjacent, but it would miss occur-
rences such as William A. Woods.

The passage operator also helps 
with problems of word-sense ambi-
guity, since when the terms in a 
passage are related in the text as they 
are in the query, they are also more 
likely to be used in the same sense. 
For example, searching for bill woods 
with a passage operator is more 
likely to find bill as a name (rather 
than an invoice) when the passage 
has a low penalty (e.g., few or no 
intervening words).
Searching the Web versus Search-
ing a Web Site. As I mentioned 
earlier, searching a Web site often 
doesn’t work as well as searching the 
Web as a whole. There are several 
reasons for this. For one thing, the 
Web is so vast that almost every-
thing is out there, expressed in 
almost every possible way, so your 
request is more likely to find a direct 

match. Almost any way of expressing a query will find 
thousands of hits. For a Web search engine, the important 
thing is to choose a small number of those hits to display 
and to do the query processing as quickly and cheaply 
as possible. Paraphrase support is not usually considered 
important, and it takes extra time and effort.

On the other hand, when searching a Web site or a 
corporate knowledge base, what you need to find may 
be worded in a particular way, and morphological and 
semantic paraphrase support may be necessary to find 
it. For example, in an experimental version of our search 
engine, indexing the Sun Labs Web site, the query clock-
less design retrieved passages involving asynchronous 
design. The conceptual index revealed that only two 
documents on the site mentioned clockless, and 142 men-
tioned asynchronous. If you were looking for this informa-
tion without benefit of paraphrase support, you might go 
away without knowing that you had missed most of what 
was there.

It would be possible, in principle, to apply the same 
kinds of semantic and morphological expansions to the 
entire Web, using the specific-passage-retrieval technique, 
but that has not been my primary target. The Web is so 
vast that it is difficult to predict what would happen with-
out trying it. There would probably be more issues with 
word sense ambiguity, and a global conceptual taxonomy 
would be awe inspiring. It would be an interesting chal-
lenge. Certainly the cost would be greater than for cur-

rent Web search engines and might 
not fit their business models.

The specific-passage-retrieval 
algorithm lends itself to applications 
of large scale, because it allows a 
collection to be subdivided and the 
search to be distributed, with the 
results easily collated (because the 
penalty scores are independent of 
collection statistics). In theory, this 
could be used for a kind of feder-
ated Web search in which owners 
of content could provide their own 
indexing and search and could 
update their indexes whenever 
the content changed. This would 
address a fundamental problem of 
Web searching: the never-ending 
task of repeatedly crawling the Web, 
trying to keep the indexes current. 

It is interesting to contemplate a 
federation knit together by a span-
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ning network of systems (possibly a peer-to-peer network) 
that distribute queries and collate the results. Some of the 
members of the federation could be large content provid-
ers who index their own content, whereas others could 
be crawler-based services like current Web search engines. 
Of course, this would take a heretofore untold amount of 
cooperation among many players that are currently fierce 
competitors, making this scenario perhaps nothing more 
than theoretical for the time being.
Further Challenges. Specific passage retrieval is a heuris-
tic technique that correlates fairly well with whether the 
terms in a passage are related in the way that they are in 
the query, without needing a more complex system that 
would parse the query and the passage and understand 
how all of the terms are syntactically related. It provides a 
useful way for people to find answers to specific ques-
tions, but it relies on human judgment to recognize the 
answers when it finds them. Much of my research with 
this technique has focused on finding relevant passages 
and displaying information to enable the human user to 
make this judgment quickly. 

Beyond finding passages that are likely to contain an 
answer lies the challenge of understanding whether a 
passage has an answer and what the answer is. Sometimes 
this can require a considerable amount of knowledge-
based reasoning.

For example, if an article contains the sentence, “Sena-
tor Daniel Patrick Moynihan told his colleagues that he 
wanted to make the longest word in the English language 
by taking the term ‘floccinaucinihilipilification’ and add-
ing the suffix ‘-ism’,” then the specific-passage-retrieval 
algorithm can find it in response to any of these queries: 
longest word in the English language; longest word in English; 
longest English word—or even What is the longest word in 
the English language. It takes some significant reasoning, 
however, to deduce from this sentence and its surround-
ing context that floccinaucinihilipilification is a possible 
answer. (Incidentally, this word, reported as the longest 
word in the first edition of the Oxford English Dictionary, is 
used in the 1994 Patrick O’Brian novel, Master and Com-
mander, on which the recent movie was based.)

If you can understand whether a passage has an 
answer and what the answer is, then a next step would 
be to combine items of information from multiple 
sources to deduce answers. For example, if another article 
contains the sentence, “Since 1961, the longest word in 
the unabridged Webster’s Third New International Diction-
ary has been ‘pneumonoultramicroscopicsilicovolcano-
coniosis’,” then you can conclude that this is a better 
answer.

These tasks will require systems that can determine 
what passages are saying and reason with the resulting 
knowledge, and they will require additional sources of 
knowledge and advancements in automated reasoning. 
An active research area devoted to question-answering is 
pursuing such goals. Q
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