
DEPARTMENT OF COMPUTER SCIENCE

Fast Text Searching With Errors

Sun Wu and Udi Manber

TR 91-11



FAST TEXT SEARCHING WITH ERRORS

Sun Wu and Udi Manber1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

June 1991

ABSTRACT

Searching for a pattern in a text file is a very common operation in many applications ranging

from text editors and databases to applications in molecular biology. In many instances the pat-

tern does not appear in the text exactly. Errors in the text or in the query can result from misspel-

ling or from experimental errors (e.g., when the text is a DNA sequence). The use of such

approximate pattern matching has been limited until now to specific applications. Most text edi-

tors and searching programs do not support searching with errors because of the complexity

involved in implementing it. In this paper we present a new algorithm for approximate text

searching which is very fast and very flexible. We believe that the new algorithm will find its way

to many searching applications and will enable searching with errors to be just as common as

searching exactly.

1. Introduction
The string-matching problem is a very common problem. We are searching for a pattern

P =p 1p 2...pm inside a large text file T = t 1t 2
. . . tn. The pattern and the text are sequences of

characters from a finite character set Σ. The characters may be English characters in a text file,

DNA base pairs, lines of source code, angles between edges in polygons, machines or machine

parts in a production schedule, music notes and tempo in a musical score, etc. We want to find all

occurrences of P in T; namely, we are searching for the set of starting positions

F = { i | 1 ≤ i ≤ n −m +1 such that titi +1
. . . ti +m −1 = P}. The two most famous algorithms for this

problem are the Knuth Morris Pratt algorithm [KMP77] and the Boyer-Moore algorithm [BM77].

There are many extensions to this problem; for example, we may be looking for a set of patterns,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from

AT&T, and by an NSF grant CCR-9002351.



2

a regular expression, a pattern with ‘‘wild cards,’’ etc. String-matching tools are included in

every reasonable text editor and they serve many different applications.

In some instances, however, the pattern and/or the text are not exact. We may not

remember the exact spelling of a name we are searching, the name may be misspelled in the text,

the text may correspond to a sequence of numbers with a certain property and we do not have an

exact pattern, the text may be a sequence of DNA molecules and we are looking for approximate

patterns, etc. The approximate string-matching problem is to find all substrings in T that are close

to P under some measure of closeness. The most common measure of closeness is known as the

edit distance (also the Levenshtein measure [Le66]). A string P is said to be of distance k to a

string Q if we can transform P to be equal to Q with a sequence of k insertions of single characters

in (arbitrary places in) P, deletions of single characters in P, or substitutions of characters. IN

some cases we may want to define closeness differently. For example, a policeman may be

searching for a license plate ABC123 with the knowledge that the letters are correct, but there

may be an error with the numbers. In this case, a string is of distance 1 to ABC123 if only one

error occurs and it is within the digits area. Maybe there are always 3 digits in a license plate, in

which case only substitutions are allowed. Sometimes one wants to vary the cost of the different

edit operations, say deletions cost 3, insertions 2, and substitutions 1.

Many different approximate string-matching algorithms have been suggested ([CL90],

[GG88], [GP90], [HD80], [LV88], [LV89], [My86], [TU90], and [Uk85a] is a partial list). In this

paper we present a new algorithm which is very fast in practice, reasonably simple to implement,

and supports a large number of variations of the approximate string-matching problem. The algo-

rithm is based on a numeric scheme for exact string matching developed by Baeza-Yates and

Gonnet [BG89] (See also [BG91]). The algorithm can handle several variations of measures and

most of the common types of queries, including arbitrary regular expressions. In our experiments,

the algorithm was at least twice as fast as other algorithms we tested (which are not as flexible),

and for many cases an order of magnitude faster. For example, finding all occurrences of Homo-

genos allowing two errors in a one megabyte bibliographic text takes about 0.4 seconds on a SUN

SparcStation II, which is about twice as fast as running the program egrep (which will not find

anything because of the misspelling). We actually used this example and found a misspelling in

our text.

The paper is organized as follows. We first describe the algorithm for the pure string-

matching problem (i.e., the pattern is a simple string). In Section 3, we present many variations

and extensions of the basic algorithm, culminating with matching arbitrary regular expressions

with errors. Experimental results are given in Section 4. In Section 5 we describe a tool called

agrep for approximate string matching based on the algorithm. Agrep is available through

anonymous ftp from cs.arizona.edu.



3

2. The Algorithm
We first describe the case of exact string matching. The algorithm for this case is identical with

that of Baeza-Yates and Gonnet [BG89]. We then show how to extend the algorithm to search

with errors. We then describe how to speed up the search with errors by using an exact search

most of the time.

2.1. Exact Matching

Let R be a bit array of size m (the size of the pattern). We denote by Rj the value of the array R

after the j character of the text has been processed. The array Rj contains information about all

matches of prefixes of P that end at j. More precisely, Rj[i ] =1 if the first i characters of the pat-

tern match exactly the last i characters up to j in the text (i.e., p 1p 2
. . . pi = tj −i +1tj −i +2

. . . tj).

When we read tj +1 we need to determine whether tj +1 can extend any of the partial matches so far.

For each i such that Rj[i ] =1 we need to check whether tj +1 is equal to pi +1. If Rj[i ] =0 then there

is no match up to i and there cannot be a match up to i +1. If tj +1 =p 1 then Rj +1[1] =1. If

Rj +1[m ] = 1 then we have a complete match, starting at j −m +2, and we output it. The transition

from Rj to Rj +1 can be summarized as follows:

Initially, R 0[i ] = 0 for all i, 1 ≤ i ≤ m ; R 0[0] = 1 (to avoid having a special case for i =1).

Rj +1[i ] =
I
K
L0
1

otherwise

if Rj[i −1] = 1 and pi = tj +1

If Rj +1[m ] = 1 then we output a match at j −m +2 ;

This transition, which we have to compute once for every text character, seems quite com-

plicated. Other fast string-matching algorithms avoid the need to maintain the whole array by

storing only the best match so far and some more information that depends on the pattern. The

main observation about this transition, due to Baeza-Yates and Gonnet [BG89], is that it can be

computed very fast in practice as follows. Let the alphabet be Σ =s 1,s 2,...,s | Σ | . For each charac-

ter si in the alphabet we construct a bit array Si of size m such that Si[r ] =1 if pr = si . (It is

sufficient to construct the S arrays only for the characters that appear in the pattern.) In other

words, Si denotes the indices in the pattern that contain si . It is easy to verify now that the transi-

tion from Rj to Rj +1 amounts to no more than a right shift of Rj and an AND operation with Si ,

where si = tj +1. So, each transition can be executed with only two simple arithmetic operations, a

shift and an AND. We assume that the right shift fills the first position with a 1. If only 0-filled

shifts are available (as is the case with C), then we can add one more OR operation with a mask

that has one bit. (Baeza-Yates and Gonnet [BG89] used 0 to indicate a match and an OR opera-

tion instead of an AND; that way, 0-filled shifts are sufficient. This is counterintuitive to explain,

so we opted for the easier definition.) An example is given in Figure 1a, where the pattern is

aabac and the text is aabaacaabacab. The masks for a b and c are given in Figure 1b.

The discussion above assumes, of course, that the pattern’s size is no more than the word

size, which is often the case. If the pattern’s size is twice the word size, then 4 arithmetic



4

a a b a a c a a b a c a b a b c

a 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0

a 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0

b 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

a 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

c 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

a. b.

Figure 1: An example of exact matching and the corresponding masks.

operations will suffice. Patterns of more than 64 characters are quite rare in practice, although

there are applications for which they can appear. We discuss this issue further in section 3, but for

now we’ll assume that the pattern’s size is no more than the word size. This algorithm is clearly

very easy to implement. Its running time is totally predictable because it depends only on the size

of the text (assuming again that the pattern fits into a word) and not on the actual text or the alpha-

bet.

2.2. Matching With Errors

We now show how to adapt the previous algorithm to allow errors. (Baeza-Yates and Gonnet

[BG89] showed how to handle only mismatches by essentially counting k of them with a log2k

size counter, but they did not handle insertions or deletions.) We start with a very simple case:

only one insertion is allowed into the pattern at any position. In other words, we want to find all

intervals of size at most m +1 in the text that contain the pattern as a subsequence. We define the

R and S arrays as before, but now we have two possibilities for each prefix match. We can have

an exact match or a match with one insertion. Therefore, we introduce another array, denoted by

R j
1, which indicates all possible matches up to tj with at most one insertion. More precisely,

R j
1[i ] =1 if the first i characters of the pattern match i of the last i +1 characters up to j in the text.

If we can maintain both R and R 1 then we can find all matches with at most one insertion:

Rj[m ] =1 indicates that there is an exact match and R j
1[m ] =1 indicates that there is a match with

at most one insertion (sometimes both will equal to 1 at the same time).

The transition for the R array is the same as before. We need only to specify the transition

for R 1. There are two cases for a match with at most one insertion of the first i characters of P up

to tj +1:

I1. There is an exact match of the first i characters up to tj . In this case, inserting tj +1 at the end

of the exact match creates a match with one insertion.



5

I2. There is a match of the first i −1 characters up to tj with one insertion and tj +1 =pi . In this

case, the insertion is somewhere inside the pattern and not at the end.

Case I1 can be handled by just copying the value of R to R 1 and case I2 can be handled with a

right shift of R 1 and an AND operation with Si such that si = tj +1. So, to compute R j
1 we need one

additional shift (the shift of R is done already), one AND operation and one OR operation. An

example (with the same pattern and text as the example for the exact matching, is given in figure

2.

Consider now allowing one deletion from the pattern (and no insertions). We will define R,

R 1 (which now indicates one deletion), and S as before. There are again two cases for a match

with at most one deletion of the first i characters of P up to tj +1:

D1. There is an exact match of the first i −1 characters up to tj +1 (which is indicated by the new

value of the R array Rj +1[i −1]). This case corresponds to deleting pi and matching the first

i −1 characters.

D2. There is a match of the first i −1 characters up to tj with one deletion and tj +1 =pi . In this

case, the deletion is somewhere inside the pattern and not at the end.

Case D2 is handled as before (it is exactly the same), and case D1 is handled by a right shift of the

new value of Rj +1.

Finally let’s consider a substitution. That is, we allow replacing one character of P with one

character of T. (We can achieve substitution with one deletion and one insertion, but in many

cases we want substitution to count as only one error.) We again have two cases:

S1. There is an exact match of the first i −1 characters up to tj This case corresponds to substi-

tuting tj +1 with pi (whether or not they are equal — the equality will be indicated in R) and

matching the first i −1 characters.

S2. There is a match of the first i −1 characters up to tj with one substitution and tj +1 =pi . In

this case, the substitution is somewhere inside the pattern and not at the end.

a a b a a c a a b a c a b a a b a a c a a b a c a b

a 1 1 0 1 1 0 1 1 0 1 0 1 0 a 1 1 1 1 1 1 1 1 1 1 1 1 1

a 0 1 0 0 1 0 0 1 0 0 0 0 0 a 0 1 1 1 1 1 1 1 1 1 0 0 0

b 0 0 1 0 0 0 0 0 1 0 0 0 0 b 0 0 1 1 0 0 0 0 1 1 0 0 0

a 0 0 0 1 0 0 0 0 0 1 0 0 0 a 0 0 0 1 1 0 0 0 0 1 1 0 0

c 0 0 0 0 0 0 0 0 0 0 1 0 0 c 0 0 0 0 0 0 0 0 0 0 1 1 0

R R 1

Figure 2: An example for approximate matching with one insertion.



6

Case S2 is again the same. Case S1 corresponds to looking at Rj[i −1] as opposed to looking at

Rj +1[i −1] in case D1. Still very few operations cover one substitution as well.

We are now ready to consider the general case of up to k errors, where an error can be

either an insertion, a deletion, or a substitution (the Levenshtein or the edit-distance measure).

Overall, instead of one additional R 1 array, we will maintain k additional arrays R 1, R 2, ..., R k ,

such that array R d stores all possible matches with up to d errors. We need to determine the tran-

sition from array R j
d to R j +1

d . There are 4 possibilities for obtaining a match of the first i charac-

ters with ≤ d errors up to tj +1:

1. There is a match of the first i −1 characters with ≤ d errors up to tj and tj +1 =pi . This case

corresponds to matching tj +1.

2. There is a match of the first i −1 characters with ≤ d −1 errors up to tj . This case corresponds

to substituting tj +1.

3. There is a match of the first i −1 characters with ≤ d −1 errors up to tj +1. This case

corresponds to deleting pi .

4. There is a match of the first i characters with ≤ d −1 errors up to tj . This case corresponds to

inserting tj +1.

Let’s denote R as R 0, and assume that tj +1 = sc . Overall, we have the following expression for

R j +1
d :

R0
d = 11..100...000 d ones.

R j +1
d = Rshift[R j

d] AND Sc OR Rshift[R j
d −1] OR Rshift[R j +1

d −1 ] OR R j
d −1

(2.1)= Rshift[R j
d] AND Sc OR Rshift[R j

d −1 OR R j +1
d −1 ] OR R j

d −1.

Overall, we have a total of two shifts, one AND, and three ORs for each R d. There are k +1

arrays, so the total amount of work is O ((k +1)n). An important feature of this algorithm is that it

can be relatively easily extended to several more complicated patterns. This is the topic of Sec-

tion 3.

2.3. An Improvement to the Main Algorithm

If the number of errors is small compared to the size of the pattern, then we can improve the run-

ning time sometimes by what we call the partition approach. Suppose again that the pattern P is

of size m and that at most k errors are allowed. Let r = Q
k +1
mhhhh P, and let P 1, P 2, ..., Pk +1 be the first

k +1 blocks of P each of size r. In other words, P 1 = p 1p 2
. . . pr , ..., Pj =p (j −1)r +1

. . . pjr . If P

matches the text with at most k errors, then at least one of the Pj’s must match the text exactly.

We can search for all Pj’s at the same time (we discuss how to do that in the next paragraph) and,

if one of them matches, then we check the whole pattern directly (using the scheme in 2.2) but

only within a neighborhood of size m from the position of the match. Since we are looking for an



7

exact match, there is no need to maintain all k of the R d vectors. This scheme will run fast if the

number of exact matches to any one of the Pj’s is not too high. The number of such matches

depend on many factors including the size of the alphabet, the actual text, and the values of r and

m. For example, if r =1, then we will need to check any time there is a character match, which is

probably too often. On the other hand, if r =3, m =12 (which implies k =3), the alphabet size is

26, and the text is uniformly random (i.e., each character appears with the same probability), the

expected number of matches of any of the Pj’s is about 0.02% of the time. In this case, it is obvi-

ously advantageous to search for exact matches and use the approximate scheme only at the rare

occasions where a match occurs. The running time in this case is essentially the same as the run-

ning time of a search without errors. Experiments using this partition scheme for different alpha-

bet sizes are given in Section 4.

The main advantage of this scheme is that the algorithm for exact matching presented in

Section 2.1 can be adapted in an elegant way to support it. We illustrate the idea with an example.

Suppose that the pattern is ABCDEFGHIJKL (m =12) and k =3. We divide the pattern into

k +1 =4 blocks: ABC, DEF, GHI, and JKL. We need to find whether any of them appears in the

text. We create one combined pattern by interleaving the 4 blocks: ADGJBEHKCFIL. We then

build the mask vector R as usual for this interleaved pattern (see Section 2.1). The only difference

is that, instead of shifting by one in each step, we shift by four! There is a match if any of the last

four bits is 1. (When we shift we need to fill the first four positions with 1’s, or better yet, use

shift-OR.) Thus, the match for all blocks can be done exactly the same way as regular matches

and it takes essentially the same running time.

3. Extensions
An important feature of our algorithm is its flexibility. In addition to asking about a single string,

the algorithm supports range of characters (e.g., ‘‘0-9’’), complements (e.g., everything except

blank), arbitrary sets of characters (e.g., {a,e,i,o,u}), unlimited ‘‘wild cards,’’ and combinations of

the above. Searching for several strings at the same time is also possible, although the size of the

pattern becomes the sum of the sizes of the different strings (and might thus require more than one

word to represent). The algorithm can be extended to support any regular expression. We discuss

regular expressions briefly in section 3.8.

3.1. Sets of Characters

Replacing one character with a set of allowable characters is very easy to achieve with this algo-

rithm (as was shown by Baeza-Yates and Gonnet [BG89]). Suppose that the pattern we want to

find is P 1 followed by one digit followed by P 2 and that we allow up to k errors. We denote this

pattern by P 1[0−9]P 2. The only thing we need to do to accept a set of characters is to include the

position of [0−9] in the S arrays for all digits. That is, in the preprocessing stage, when we decide

for each character the positions that this character matches in the pattern, we include all the char-

acters in the set within that position. The rest of the algorithm is identical with the regular



8

algorithm. A complement of a character is a special case of a set of characters and it can obvi-

ously be handled in the same way.

3.2. Wild Cards

A single wild card is a symbol that matches all characters. As such, it is a special case of a set of

characters and can be handled as we discussed in the previous section. Sometimes, however, we

want to indicate that we allow an unbounded number of characters to appear in the middle of the

pattern (or even do it several times in the middle of the pattern). This case requires modifying the

algorithm slightly. Let the pattern be P =p 1p 2
. . . pm, and assume that the positions of ‘#’ (which

indicates unlimited wild cards in agrep) are after the characters pi 1
, pi 2

, ..., pis
. (There is no reason

to have two #’s in a row.) Let S # be a bit array that has 1 in exactly the positions i 1, i 2, ..., is . The

effect of putting a ‘#’ following pi can be defined as follows. If we are scanning tj and we find a

match with up to d errors that ends at pi , then later when we scan tr , for any r > j, we can start

matching tr to pi +1 no matter how many characters we skipped. In other words, if at some point

there is a match up to pi then this match is always valid later on (because all the characters later on

can be considered as part of the ‘#’).

We can adjust the algorithm for this case as follows. At each step, we apply the regular

algorithm to compute all the R arrays. That is, we compute R j
0, R j

1, ..., R j
d using (2.1). Then, for

each i, 1 ≤ i ≤ d, we set R j
i = R j

i OR [R j −1
i AND S #]. This step corresponds to the action ‘‘if at any

point, there is a 1 entry in R i AND S #, then this entry should remain 1 from now on.’’

3.3. Unknown Number of Errors

In some cases, we do not know the number of errors a-priori. We would like to find all

occurrences of the pattern with the minimal number of errors possible. The algorithm can be

extended to this case as follows. We first try to find the pattern with no errors. If we are unsuc-

cessful, we try with one error, then with three errors, then with 7 errors, and so on, essentially

doubling the number of errors (and adding one) at each attempt. If the number of errors turns out

to be k, then the running time will be O (1 . n + 2 . n + 4 . n + . . . + 2b . n), where 2b is the first

power of 2 greater than k. In the worst case, we perform 4 times as many operations as we would

have had we known k (in most cases, the factor is actually 2 or 3). This is not desirable, but not

prohibitive. There are other methods to find the minimum number of errors.

3.4. A Combination of Patterns With and Without Errors

Sometimes we do not want to allow parts of the pattern to have errors. For example, we may look

for license plate ABC123, and we know that the letters are correct but the numbers may have one

error in them. We denote this pattern by <ABC>123. We can modify the algorithm to shield

parts of the pattern from having any errors in them. Let’s assume that I is the set of indices in the

pattern where no error is allowed, and let M be a masking array (of size m) that has a 0 in the



9

indices of I and a 1 otherwise. We would like to modify (2.1) such that insertions, deletions, and

substitutions can only occur outside of I. This is done by masking these cases with M. The

expression in (2.1) is changed to

(2.2)R j +1
d = I

L Rshift[R j
d] AND Sc

M
O OR I

L Rshift[R j
d −1 OR R j +1

d −1 ] OR R j
d −1 M

O AND M.

3.5. Non-Uniform Costs

The edit distance measure, defined in section 1, assumes that insertions, deletions, and substitu-

tions all have the same cost. But in some cases, we want to allow fewer deletions, say, than sub-

stitutions. The algorithm can be extended, albeit in a limited way, to the case where each opera-

tion has a different cost. We illustrate this extension with an example. Suppose that substitutions

add 1 to the distance, but insertions and deletions add 3 each. Insertions and deletions are handled

in cases 4 and 3 (see section 2). Insertions contribute the OR of R j
d −1 and deletions contribute the

OR of Rshift [R j +1
d −1 ] (2.1). We would like them to cost 3 times as much. In other words, a deletion

or insertion that leads to a match with d errors should come from a match with d −3 errors. This

can be achieved by simply replacing the d −1 in both expressions with d −3. This modification is

very simple and it does not add to the running time; however, it works only for small integer

costs.

3.6. A Set of Patterns

If we have several patterns and we want to find all occurrences of any of them, then we can either

search them one at a time or together. The advantage of searching for all of them together is that

it can be done in one scan (and in one command). Suppose that we are looking for P 1, P 2, ..., Pr .

We concatenate all the patterns and put them in one array (using as many words as needed), and

apply the algorithm on that array with the following modifications. Let M be a bit array the size of

the combined pattern, and let bit i be 1 if and only if i corresponds to the first character of any of

the patterns. For each s ∈ Σ , we build two bit arrays. The first, Ss is identical with the one

described in section 2. It is used to determine if a match occurs. The second array S′s =

Ss AND M. It indicates whether s is the first character of any pattern. If so, then we must start the

match at that pattern: we do not want to depend on the end of the previous pattern. Thus, after we

compute Rj , we OR it with S′s (where s = tj). We compute the rest of the R arrays as before,

except that in each step we OR them to a special mask that sets the first d bits in R d of each

separate pattern to 1; this allows d initial errors in each pattern. (This is not the most efficient way

to solve this problem, but it’s reasonably simple.) This case is a special case of patterns as regular

expressions, which we will discuss shortly.



10

3.7. Long Patterns

Suppose that the pattern occupies several words and that it is a simple string. The algorithm

proceeds in the same fashion by computing the R d arrays for all words. However, unless the

number of errors is large, the first part of the pattern will not match the text quite often. If there is

no match with k errors starting after position r of the pattern, then there is no need to maintain the

R arrays corresponding to positions larger than r (their values will be 0). Thus, most of the time

there will be no need to maintain the R d arrays for the right side of the pattern. We only need to be

alerted when the last bit of the last R d array that we maintain gets the value of 1. In that case, we

start maintaining the Rd arrays for the next part of the pattern. This improvement works only for

simple strings and not for sets of strings or regular expressions.

3.8. Regular Expressions

The algorithm can be extended to allow any regular expression as a pattern. We describe the

method here only briefly. Algorithms for matching regular expressions with errors, based on the

dynamic-programming approach, appear in [MM89]. First, we illustrate the algorithm with a sim-

ple example. We do not try to optimize the algorithm at this stage; we try to make it as simple as

possible (a more detailed discussion and more efficient algorithms will be presented elsewhere).

Let the pattern be P =ab (cd |e)* fg (i.e., starting with ab and ending with fg with any number of

either cd or e in between). This regular expression is translated to the non-deterministic finite

automata shown in Fig. 3 (for more on such translations see [HU79]). We now assign a bit array

to represent the automata. We number the states including the null states that do not correspond to

any character (see Fig. 3). This ‘‘linearizes’’ the automata. Each state corresponds to one entry in

the array. Thus, for P we have an array of size 11. Notice that all the non-ε moves go to the next

state and thus can be handled by essentially a shift and an AND operation. We need to find a way

1098

76

543

210

dc

gf

ε
ε

ε
ε

e

ε

ba

Figure 3: The non-deterministic automata corresponding to ab (cd |e)*fg.



11

to deal with arbitrary jumps required by the ε moves (e.g., from state 2 to state 8) and with ‘‘non-

jumps’’ that happen to be in consecutive states (e.g., from state 5 to state 6). The non-jumps can

be handled easily with a mask. The arbitrary jumps are harder to handle. The meaning of an ε
move from state i to state j is that if, at any point, we match up to state i then the same match

holds also up to state j. In other words, if there is a 1 corresponding to state i in the array, then the

ε move from i to j implies that there should be a 1 corresponding to state j. The main observation

is that a given bit array and set of ε moves completely determine the value of the bit array after the

ε moves are taken. Thus, the set of ε moves defines a function that maps a bit array to another.

We need to be able to implement this function efficiently.

Let f denote the function that maps one bit array to another by applying all the ε moves. We

divide the bit array into bytes, i.e., groups of 8 bits each. Consider the first 8 bits of the bit array.

The values of these bits determine which 1’s should be set when we apply the ε moves on states 1

to 8. Since there are only 256 (=28) possible values for 8 bits, we can preprocess all possibilities

and construct a table of size 256 which will hold, for each possible byte, the whole bit array with

1’s only in places corresponding to the ε moves. (We need the whole array and not just the first 8

bits, because there might be forward jumps.) We can do that for each byte. Given now a current

value of R, we first apply the regular algorithm, taking care of regular non ε moves, then we

divide the array into bytes, find the corresponding arrays in the tables (we have one table per

byte), and OR all of them to R. This implements all the jumps, and if the pattern is occupies no

more than 32 bits (as is often the case), only 4 more steps are required. (If the text is large, it is

worthwhile to preprocess 16 bits for a table of size 65536 and half as many steps.)

The algorithm sketched above is not the most efficient algorithm, but it is reasonably sim-

ple. More efficient algorithms will be described elsewhere.

3.9. Very Large Alphabets

Sometimes the alphabet is very large. For example, the pattern can be a segment of a program

which we want to find inside a large program. Instead of counting each text character as a charac-

ter in the pattern, we may wish to count each line as a character (this is done, for example, in the

program diff which is used to compare files). The problem we have with large alphabets is that the

preprocessing stage, where all the Ss arrays are constructed, will take too long and require too

much space (the set of all possible program lines is, for all practical purposes, infinite). However,

we can use hashing to map the alphabet to a reasonable size. We first decide the hashing table

size, which should be large enough to avoid many collisions but not too large so that we can

afford the space (e.g., 1024). The alphabet becomes the set of integers from 1 to the table size.

The algorithm is applied to the hash values. At the end, all matches should be checked again,

however, to remove matchings that result from collisions. We do not support, at this time, large

alphabets in agrep.



12

4. Experimental Results
We have implemented the algorithm and many of its extensions and tested them against previous

algorithms. All tests were run on a SUN SparcStation II running UNIX. A description of agrep

— a tool for approximate string matching based on this algorithm, which we used for the experi-

ments — is given in the next section. In almost all the cases, our algorithm beat the other algo-

rithms, sometimes by a wide margin.

The numbers given here should be taken with caution. Any such results depend on the

architecture, the operating system, and the compilers used. We probably put more efforts into

optimizing our algorithm than we did for other algorithms (although we put significant effort into

that too), and we did not test all possible scenarios. However, we tried not only to be fair but also

to be conservative. We used the final agrep program for all our tests even though it contains many

options that slow it down and are not available in the other programs (e.g., the fact that agrep is

record oriented — see next section — slows it down considerably). For the simple cases that are

listed in the tables below, we sometimes obtained 20-30% faster running times with versions of

the program that has only the tested options. We believe that the main strength of this algorithm is

that it is more flexible, general, and convenient than all previous algorithms. The fact that for

most of the common applications of it, agrep is also significantly faster than other algorithms is

nice, but speed is mostly a secondary issue here; other algorithms are reasonably fast already.

First, we tested searching without errors vs. the grep family of programs available in UNIX

and against an implementation of the Boyer-Moore algorithm. The text was a bibliography file of

size one Megabytes. We used 5 patterns of varying sizes (4-10) and averaged the results. Agrep

consistently beats the grep family, but it is not as fast as the Boyer-Moore algorithm. (The

Boyer-Moore algorithm cannot be used, as far as we know, for most of the extensions in the previ-

ous section; even finding line numbers for all the matches is not trivial and slows the algorithm

down considerably.)

We then tested the approximate string-matching algorithm against two other algorithms, one

by Ukkonen [Uk85a] (which we implemented) and one by Galil and Park [GP90] (labeled MN2;

the program was provided to us by W. I. Chang) which is based on another technique by Ukkonen

[Uk85b]. The last algorithm was found by Chang and Lawler [CL90] to be the fastest among the

algorithms they tested. We used random text (of size 1,000,000) and pattern (of size 20), and two

different alphabet sizes. In this case, since we use the idea of partitioning the pattern, the size of

the alphabet makes a big difference. A large alphabet leads to very few accidental exact matches,

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

BM agrep egrep grep fgrep wciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

0.21 0.35 0.79 1.22 1.61 1.19iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c

c
c
c
c

Table 1: Exact matching of simple strings.



13

thus the running time is essentially the same as the one for exact matching. A small alphabet leads

to many matches and the algorithm’s performance degrades. The case of binary alphabet serves

as the worst case for this purpose. Results are shown in Table 2. The final test was for more com-

plicated patterns, including some of the extensions discussed in the previous section. (Anything

within the <> brackets must match exactly; a ‘#’ stands for a wild card of arbitrary length; A ‘;’

serves as the Boolean AND operation, namely all patterns must appear within the same line; a ‘|’
is the regular expression union operation; and a ‘*’ is the Kleene closure.) The results are given in

Table 3 (the file was the same bibliographic file used in Table 1). The best algorithm we know for

approximate matching to arbitrary regular expressions is by Myers and Miller [MM89]. Its run-

ning times for the cases we tested were more than an order of magnitude slower than our algo-

rithm, but this is not a fair test, because Myers and Miller’s algorithm can handle arbitrary costs

(which we cannot handle) and its running time is independent of the number of errors (which

makes it high for small errors).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

agrep MN2 Uk85a

Σ = 2 Σ = 30 Σ = 2 Σ = 30 Σ = 2 Σ = 30iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

k = 0 0.35 0.35 1.21 0.98 2.36 0.90

k = 1 0.52 0.38 3.03 2.42 5.01 2.06

k = 2 1.78 0.38 4.94 3.87 7.93 3.19

k = 3 2.56 0.39 6.68 5.33 11.80 4.38

k = 4 3.83 0.41 8.72 6.89 13.40 5.55

k = 5 4.42 0.42 10.41 8.28 15.45 6.77

k = 6 5.13 0.73 11.83 9.75 17.07 7.99iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Approximate string matching of simple strings.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

pattern k = 0 k = 1 k = 2 k = 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Homogenious 0.35 0.39 0.41 0.47

<Hom>ogenious 0.53 1.10 1.42 1.74

JACM; 1981; Graph 0.53 1.10 1.43 1.75

Prob#tic; Algo#m 0.55 1.10 1.42 1.76

<[CJ]ACM>; Prob#tic; trees 0.54 1.11 1.43 1.75

(<[23]>\−[23]*|<B>).*<Tr>ees 0.66 1.53 2.19 2.83iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 3: Approximate matching of complicated patterns.



14

5. A Description of agrep
agrep is used similarly to egrep and it supports most of the features of egrep (although it is not

100% compatible) and many additional features. One notable difference between agrep and the

grep family (besides the additional features) is that agrep is record oriented (rather than line

oriented). A record is defined by the user (with the default being a line). Agrep outputs all

records that match the query (see also the -d option described below). Agrep is available by

anonymous ftp from cs.arizona.edu (IP number 192.12.69.5).

agrep pattern file-name — finds all occurrences of pattern (that is, output all records con-

taining pattern) in the text file file-name without errors. The pattern can be a string or an arbitrary

regular expression. We describe below the unusual features of agrep that are not found in similar

programs. A complete description is given in the manual pages distributed with agrep.

-k finds all occurrences with at most k errors (insertions, deletions, or substitutions), where k is

a positive integer.

-Dc each deletion counts as c errors; c must be a non-negative integer; the default value of c is 1

-Ic each insertion counts as c errors; c must be a non-negative integer; the default value of c is 1

-Sc each substitution counts as c errors; c must be a non-negative integer; the default value of c

is 1

-d ‘delim’

delim is a user-defined symbol (or string) for record delimiter (the default is the new-line

symbol). This enables searching paragraphs (in which case delim = 2 new lines in a row) or

mail messages (delim = ’ˆFrom ’). This feature makes agrep a record-oriented program

rather than just a line-oriented program. We believe that it will be very useful.

Examples

agrep -3 -D2

finds all occurrences with at most 3 errors where a deletion counts as 2 errors and each

insertion or substitution counts as one error.

agrep -4 -I5

finds all occurrences with at most 4 errors but no insertions allowed (because their cost is

prohibited).

agrep -d ’ˆFrom ’ ’breakdown; (inter|arpa|bit)net’

outputs all mail messages (the pattern ’ˆFrom ’ separates mail messages in a mail file) that

contain breakdown and one of either internet, arpanet, or bitnet.

agrep -d ’$$’ -1 ’<word1> <word2>’

finds all paragraphs that contain word1 followed by word2 with one error in place of the

blank between the words (the <> indicate that no error is allowed inside; see section 3.4). In

particular, if word1 is the last word in a line and word2 is the first word in the next line, then



15

the space will be substituted by a newline symbol and it will match. Thus, this is a way to

overcome separation by a newline. Note that -d ’’ (or another delim that spans more than

one line) is necessary, because otherwise agrep searches only one line at a time.

6. Conclusions
Searching text in the presence of errors is commonly done ‘by hand’ — one tries all possibilities.

This is frustrating, slow, and with no guarantee of success. The new algorithm presented in this

paper for searching with errors can alleviate this problem and make searching in general more

robust. It also makes searching more convenient by not having to spell everything precisely. The

algorithm is very fast and general and it should find numerous applications.

There is one important area of searching with errors that we did not address — searching an

indexed file. Throughout the paper we assumed that the files are not indexed (preprocessed) in

any way, thus a sequential scan through them is necessary. We believe that the problem of finding

good indexing schemes that allow approximate search is the main open problem is this area.

Unfortunately, we do not know of any satisfactory solution at this point. However, with the speed

of current computers, scanning large files (up to tens of megabytes) can be done reasonably fast.

One can argue that the size of our data increases as our speed of processing it increases. This is

certainly true for some applications, but not for all. Many applications have an upper bound on

size and sequential search for those applications will be realistic.

Acknowledgements:
We thank Ricardo Baeza-Yates, Gene Myers, and Chunghwa H. Rao for many helpful conversa-

tions about approximate string matching and for comments that improved the manuscript. We

thank Ric Anderson, Cliff Hathaway, and Shu-Ing Tsuei for their help and comments that

improved the implementation of agrep. We also thank William I. Chang for kindly providing pro-

grams for some of the experiments.

References

[BG89]

Baeza-Yates R. A., and G. H. Gonnet, ‘‘A new approach to text searching,’’ Proceedings of

the 12th Annual ACM-SIGIR conference on Information Retrieval, Cambridge, MA (June

1989), pp. 168−175.

[BM77]

Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm,’’ Communications of the

ACM, 20 (October 1977), pp. 762−772.

[CL90]

Chang W. I., and E. L. Lawler, ‘‘Approximate string matching in sublinear expected time,’’



16

FOCS 90, pp. 116−124.

[GG88]

Galil Z., and R. Giancarlo, ‘‘Data structures and algorithms for approximate string match-

ing,’’ Journal of Complexity, 4 (1988), pp. 33−72.

[GP90]

Galil Z., and K. Park, ‘‘An improved algorithm for approximate string matching,’’ SIAM J.

on Computing, 19 (December 1990), pp. 989−999.

[GB91]

Gonnet, G. H. and R. A. Baeza-Yates, Handbook of Algorithms and Data Structures,

Second Edition, Addison-Wesley, Reading, MA, 1991.

[HD80]

Hall, P. A. V., and G. R. Dowling, ‘‘Approximate string matching,’’ Computing Surveys,

(December 1980), pp. 381−402.

[HU79]

Hopcroft, J.E., and J.D. Ullman, Introduction to Automata Theory, Languages, and Compu-

tation, Addison-Wesley, Reading, Mass (1979).

[KMP77]

Knuth D. E., J. H. Morris, and V. R. Pratt, ‘‘Fast pattern matching in strings,’’ SIAM Jour-

nal on Computing, 6 (June 1977), pp. 323−350.

[LV88]

Landau G. M., and U. Vishkin, ‘‘Fast string matching with k differences,’’ Journal of Com-

puter and System Sciences, 37 (1988), pp. 63−78.

[LV89]

Landau G. M., and U. Vishkin, ‘‘Fast parallel and serial approximate string matching,’’

Journal of Algorithms, 10 (1989).

[Le66]

Levenshtein, V. I., ‘‘Binary codes capable of correcting deletions, insertions, and rever-

sals,’’ Sov. Phys. Dokl., (February 1966), pp. 707−710.

[My86]

Myers, E. W., ‘‘An O(ND) difference algorithm and its variations,’’ Algorithmica, 1 (1986),

pp. 251−266.

[MM89]

Myers, E. W., and W. Miller, ‘‘Approximate matching of regular expressions,’’ Bull. of

Mathematical Biology, 51 (1989), pp. 5−37.

[TU90]

Tarhio J., and E. Ukkonen, ‘‘Approximate Boyer-Moore string matching,’’ Technical

Report #A-1990-3, Dept. of Computer Science, University of Helsinki (March 1990)



17

[Uk85a]

Ukkonen E., ‘‘Finding approximate patterns in strings,’’ Journal of Algorithms, 6 (1985),

pp. 132−137.

[Uk85b]

Ukkonen E., ‘‘Algorithms for approximate string matching,’’ Information and Control, 64,

(1985), pp. 100−118.


